European Resuscitation Council Guidelines 2021: Cardiac arrest in special circumstances

Carsten Lotta,*, Anatolij Truhlár b,c, Annette Alfonzod, Alessandro Barellie, Violeta González-Salvado, Jochen Hinkelbeing, Jerry P. Nolanh,i, Peter Paalj, Gavin D. Perkinskl, Karl-Christian Thiesm, Joyce Yeungk,l, David A. Zideman, Jasmeet Soaro, the ERC Special Circumstances Writing Group Collaborators

a Department of Anesthesiology, University Medical Center, Johannes Gutenberg-University Mainz, Germany
b Emergency Medical Services of the Hradec Králové Region, Hradec Králové, Czech Republic
c Department of Anaesthesiology and Intensive Care Medicine, Charles University in Prague, University Hospital Hradec Králové, Hradec Králové, Czech Republic
d Departments of Renal and Internal Medicine, Victoria Hospital, Kirkcaldy, Fife, UK
e Anaesthesiology and Intensive Care, Catholic University School of Medicine, Teaching and Research Unit, Emergency Territorial Agency ARES 118, Rome, Italy
f Cardiology Department, University Clinical Hospital of Santiago de Compostela, Institute of Health Research of Santiago de Compostela (IDIS), Biomedical Research Networking Centres on Cardiovascular Disease (CIBER-CV), A Coruña, Spain
g Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany
h Resuscitation Medicine, University of Warwick, Warwick Medical School, Coventry, CV4 7AL, UK
i Anaesthesia and Intensive Care Medicine, Royal United Hospital, Bath, BA1 3NG, UK
j Department of Anaesthesiology and Intensive Care Medicine, Hospitaliters Brothers Hospital, Paracelsus Medical University, Salzburg, Austria
k Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, UK
l University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
m Department of Anesthesiology, Critical Care and Emergency Medicine, Bethel Medical Centre, OWL University Hospitals, Bielefeld University, Germany
n Thames Valley Air Ambulance, Stokenchurch, UK
o Southmead Hospital, North Bristol NHS Trust, Bristol, UK

Abstract

These European Resuscitation Council (ERC) Cardiac Arrest in Special Circumstances guidelines are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. This section provides guidelines on the modifications required to basic and advanced life support for the prevention and treatment of cardiac arrest in special circumstances; specifically special causes (hypoxia, trauma, anaphylaxis, sepsis, hypo/hyperkalaemia and other electrolyte disorders, hypothermia, avalanche, hyperthermia and malignant hyperthermia, pulmonary embolism, coronary thrombosis, cardiac tamponade, tension pneumothorax, toxic agents), special settings (operating room, cardiac surgery, catheter laboratory, dialysis unit, dental clinics, transportation (in-flight, cruise ships), sport, drowning, mass casualty incidents), and special patient groups (asthma and COPD, neurological disease, obesity, pregnancy).

* Corresponding author.
E-mail address: lott@uni-mainz.de (C. Lott).
Available online xxx

© 2021 European Resuscitation Council. Published by Elsevier B.V. All rights reserved

Introduction

Irrespective of the cause of cardiac arrest, the most important interventions are universal and according to the chain of survival. These include early recognition and calling for help, management of the deteriorating patient to prevent cardiac arrest, prompt defibrillation and high-quality cardiopulmonary resuscitation (CPR) with minimal interruption of chest compressions, treatment of reversible causes, and post-resuscitation care. In certain conditions, however, basic and advanced life support interventions may require modification. This guideline for resuscitation in special circumstances is divided into three parts: special causes, special settings and special patients. The first part covers treatment of potentially reversible causes of cardiac arrest, for which specific treatment exists, and which must be identified or excluded during advanced life support (ALS). For improving recall during ALS, these are divided into two groups of four, based upon their initial letter – either H or T – and are called the ‘4Hs and 4Ts’:
- Hypoxia; Hypovolaemia; Hypo-/hyperkalaemia and other electrolyte disorders; Hypo-/hyperthermia; Thrombosis (coronary and pulmonary); Tamponade (cardiac); Tension pneumothorax; Toxic agents (poisoning).

Many of the chosen topics were not part of the ILCOR reviews. ILCOR has published reviews on pulmonary embolism, extracorporeal CPR (ECPR), drowning and evidence updates on pregnancy and opioid toxicity. Most of the evidence is derived from individual systematic reviews, scoping reviews and evidence updates, recommendations are provided as expert consensus following discussion in the writing group. Whenever an ILCOR systematic review or a GRADE like systematic review informs the recommendation, the level of recommendation is provided.

There are no major changes in the 2021 adult Special Circumstances guidelines. There is greater emphasis on the prioritisation of recognition and management for reversible causes in cardiac arrest due to special circumstances. The guidelines reflect the increasing evidence for extracorporeal CPR (eCPR) as management strategy for selected patients with cardiac arrest in settings in which it can be implemented. This ERC guideline follows European and international guidelines for treatment recommendations (electrolyte disorders, sepsis, coronary thrombosis, accidental hypothermia and avalanche rescue). The trauma section has been revised with additional measures for haemorrhage control, the toxic agents section comes with an extensive supplement, focusing on management of specific toxic agents. Prognostication of successful rewarming in hypothermic patients follows more differentiated scoring systems (HOPE score; ICE score). In avalanche rescue priority is given to ventilations as hypoxia is the most likely reason of cardiac arrest. Caused by the increasing number of patients from that special settings, recommendations for cardiac arrest in the catheterisation laboratory and in the dialysis unit have been added.

These guidelines were drafted and agreed by the Resuscitation in Special Circumstances Writing Group members. The methodology used for guideline development is presented in the Executive summary. The guidelines were posted for public comment in October 2020. The feedback was reviewed by the writing group and the guidelines was updated where relevant. The Guideline was presented to and approved by the ERC General Assembly on 10th December 2020.

Key guideline highlights are summarised in Fig. 1.

Concise guidelines for clinical practice

Special causes

Hypoxia

- Follow the standard ALS algorithm when resuscitating patients with asphyxial cardiac arrest.
- Treat the cause of the asphyxia/hypoxaemia as the highest priority because this is a potentially reversible cause of the cardiac arrest.
- Effective ventilation with the highest feasible inspired oxygen is a priority in patients with asphyxial cardiac arrest.

Hypovolaemia

Traumatic cardiac arrest (TCA)

- Resuscitation in TCA should focus on the immediate, simultaneous treatment of reversible causes.
- The response to TCA is time critical and success depends on a well-established chain of survival, including focused pre-hospital and specialised trauma centre care.
- TCA (hypovolemic shock, obstructive shock, neurogenic shock) is different from cardiac arrest due to medical causes; this is reflected in the treatment algorithm (Fig. 2).
- Use ultrasound to identify the underlying cause of cardiac arrest and target resuscitative interventions.
- Treating reversible causes simultaneously takes priority over chest compressions. Chest compression must not delay treatment of reversible causes in TCA.
- Control haemorrhage with external pressure, haemostatic gauze, tourniquets and pelvic binder.
- ‘Don’t pump an empty heart’.
- Resuscitative thoracotomy (RT) has a role in TCA and traumatic peri-arrest.

Anaphylaxis

- Recognise anaphylaxis by the presence of airway (swelling), breathing (wheeze or persistent coughing), or circulation (hypotension) problems with or without skin and mucosal changes. This can be in the context of a known trigger in a patient with an allergy, or suspected anaphylaxis in a patient with no previous history of allergy.
- Call for help early.
- Remove or stop the trigger if feasible.
- Give intramuscular (IM) adrenaline (0.5 mg which is 0.5 ml of a 1 mg in 1 ml ampoule of adrenaline)) into the anterolateral thigh as soon as anaphylaxis is suspected. Repeat the IM adrenaline if there is no improvement in the patient’s condition after about 5 min.
- Ensure the patient is lying and do not suddenly sit or stand the patient up.
- Use an ABCDE approach and treat problems early (oxygen, fluids, monitoring).
- Give an IV crystalloid fluid bolus early and monitor the response – large volumes of fluids may be needed.
Consider IV adrenaline as a bolus (20–50 mcg) or infusion for refractory anaphylaxis or in specialist care settings where the skills are available.

Consider alternative vasopressors (vasopressin, noradrenaline, metaraminol, phenylephrine) in refractory anaphylaxis.

Consider IV glucagon in patients taking beta-blockers.

Start chest compressions and ALS as soon as cardiac arrest is suspected and follow standard guidelines.

Consider ECLS or ECPR for patients who are peri-arrest or in cardiac arrest as a rescue therapy in those settings where it is feasible.

Follow existing guidelines for the investigation and follow-up care of patients with suspected anaphylaxis and confirmed anaphylaxis.

Sepsis

Cardiac arrest prevention in sepsis

- Follow the Surviving Sepsis Guidelines Hour-1 bundle for the initial resuscitation of sepsis and septic shock (Fig. 3).

Specifically:

- Measure lactate level.
Fig. 2 – Traumatic cardiac arrest algorithm.
Hour-1 Bundle
Initial Resuscitation for Sepsis and Septic Shock

1. Measure lactate level. Remeasure lactate if initial lactate elevated (> 2 mmol/L).
2. Obtain blood cultures before administering antibiotics.
3. Administer broad-spectrum antibiotics.
4. Begin rapid administration of 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L.
5. Apply vasopressors if hypotensive during or after fluid resuscitation to maintain a mean arterial pressure ≥ 65 mmHg.

Cardiac arrest treatment due to sepsis
- Follow standard ALS guidelines including giving the maximal inspired oxygen concentration.
- Intubate the trachea if able to do so safely.
- Intravenous (IV) crystalloid fluid resuscitation with a 500ml initial bolus. Consider administering further boluses.
- Venepuncture for venous blood gas/lactate/electrolytes.

Obtain blood cultures prior to administration of antibiotics.
Administer broad-spectrum antibiotics.
Begin rapid administration of 30 mL/kg crystalloid for hypotension or lactate ≥ 4 mmol/L.
Apply vasopressors if hypotensive during or after fluid resuscitation to maintain a mean arterial pressure ≥ 65 mmHg.

Fig. 3 – Initial Resuscitation for Sepsis and Septic Shock Hour-1 Bundle (published with permission of the Society of Critical Care Medicine, 500 Midway Drive, Mount Prospect, IL 60056-5811 USA, www.sccm.org).
Hypo/hyperkalaemia and other electrolyte disorders

- Consider hyperkalaemia or hypokalaemia in all patients with an arrhythmia or cardiac arrest.
- Check for hyperkalaemia using point-of-care testing if available.
- The ECG may be the most readily available diagnostic tool.

Treatment of hyperkalaemia

- Protect the heart (Fig. 4).
- Shift potassium into cells.
- Remove potassium from the body.
 - Consider dialysis initiation during CPR for refractory hyperkalaemic cardiac arrest.
 - Consider ECPR.
- Monitor serum potassium and glucose levels.
- Prevent the recurrence of hyperkalaemia.

Patient not in cardiac arrest

Assess patient:

- Use the ABCDE approach and correct any abnormalities, obtain IV access.
- Check serum K⁺ level – use blood gas analyser if available and send a sample to the laboratory.
- Perform an ECG – look for signs of hyperkalaemia.
- Cardiac monitoring – if the serum K⁺ ≥ 6.5 mmol/l or if the patient is acutely unwell.

Follow hyperkalaemia algorithm guided by the severity of hyperkalaemia and ECG changes.

Moderate hyperkalaemia (serum K⁺ 6.0–6.4 mmol/l)

- Shift K⁺ into cells: Give 10 units short-acting insulin and 25 g glucose (250 ml glucose 10%) IV over 15–30 min (onset in 15–30 min; maximal effect 30–60 min; duration of action 4–6 h; monitor blood glucose). Follow up with 10% glucose infusion at 50 ml/h for 5 h in patients with a pre-treatment blood glucose <7 mmol/l.
- Remove K⁺ from the body: Consider oral administration of a potassium binder, e.g. Sodium Zirconium CycloSilicate (SZC), or a cation exchange resin e.g., Patiromer or calcium resonium according to local practice.

Severe hyperkalaemia (serum K⁺ ≥ 6.5 mmol/l) without ECG changes

- Seek expert help early.
- Shift K⁺ into cells: Give insulin/glucose infusion (as above).
- Shift K⁺ into cells: Give salbutamol 10–20 mg nebulised (onset 15–30 min; duration of action 4–6 h).
- Remove K⁺ from the body: Give SZC (onset in 60 min) or Patiromer (onset in 4–7 h) and consider dialysis.

Severe hyperkalaemia (serum K⁺ ≥ 6.5 mmol/l) with toxic ECG changes

- Seek expert help early.
- Protect the heart: Give 10 ml calcium chloride 10% IV over 2–5 min (onset 1–3 min, repeat ECG, further dose if toxic ECG changes persist).
- Shift K⁺ into cells: Give insulin/glucose infusion (as above).
- Shift K⁺ into cells: Give salbutamol 10–20 mg nebulised (as above).

- Remove K⁺ from the body: Give SZC or Patiromer (see above) and consider dialysis at outset or if refractory to medical treatment.

Patient in cardiac arrest

- Confirm hyperkalaemia using blood gas analyser if available.
- Protect the heart: Give 10 ml calcium chloride 10% IV by rapid bolus injection. Consider repeating dose if cardiac arrest is refractory or prolonged.
- Shift K⁺ into cells: Give 10 units soluble insulin and 25 g glucose IV by rapid injection. Monitor blood glucose. Administer 10% glucose infusion guided by blood glucose to avoid hypoglycaemia.
- Shift K⁺ into cells: Give 50 mmol sodium bicarbonate (50 ml 8.4% solution) IV by rapid injection.
- Remove K⁺ from the body: Consider dialysis for refractory hyperkalaemic cardiac arrest.
- Consider the use of a mechanical chest compression device if prolonged CPR is needed.
- Consider ECLS or ECPR for patients who are peri-arrest or in cardiac arrest as a rescue therapy in those settings where it is feasible.

Treatment of hypokalaemia

- Restore potassium level (rate and route of replacement guided by clinical urgency).
- Check for any potential exacerbating factors (e.g. digoxin toxicity, hypomagnesaemia).
- Monitor serum K⁺ (adjust replacement as needed depending on level).
- Prevent recurrence (assess and remove cause).

Hypothermia

Accidental hypothermia

- Assess core temperature with a low reading thermometer, tympanic in spontaneously breathing, oesophageal in patients with a tracheal tube or a supraglottic device with an oesophageal channel in place (Fig. 5).
- Check for the presence of vital signs for up to one minute.
- Prehospital insulation, triage, fast transfer to a hospital and rewarming are key interventions.
- Hypothermic patients with risk factors for imminent cardiac arrest (i.e., core temperature <30 °C, ventricular arrhythmia, systolic blood pressure <90 mmHg) and those in cardiac arrest should ideally be directly transferred to an extracorporeal life support (ECLS) centre for rewarming.
- Hypothermic cardiac arrest patients should receive continuous CPR during transfer.
- Chest compression and ventilation rate should not be different to CPR in normothermic patients.
- If ventricular fibrillation (VF) persists after three shocks, delay further attempts until the core temperature is >30 °C.
- Withhold adrenaline if the core temperature is <30 °C.
- Increase administration intervals for adrenaline to 6–10 min if the core temperature is >30 °C.
- If prolonged transport is required or the terrain is difficult, use of a mechanical CPR device is recommended.
- In hypothermically arrested patients <28 °C delayed CPR may be used when CPR on site is too dangerous or not feasible, intermittent CPR can be used when continuous CPR is not possible (Fig. 6).
EMERGENCY TREATMENT OF HYPERKALAEMIA

- Assess using ABCDE approach
- 12-lead ECG and monitor cardiac rhythm if serum potassium (K+) ≥ 6.5 mmol/L
- Exclude pseudohyperkalaemia
- Give empirical treatment for arrhythmia if hyperkalaemia suspected

Mild
K+ 5.5 - 5.9 mmol/L
Consider cause and need for treatment

Moderate
K+ 6.0 - 6.4 mmol/L
Treatment guided by clinical condition, ECG and rate of rise

Severe
K+ ≥ 6.5 mmol/L
Emergency treatment indicated

ECG Changes?

Peaked T waves
Flat/absent P waves
Broad QRS
Sine wave
Bradycardia
VT

NO

YES

IV Calcium
10ml 10% Calcium Chloride IV OR 30ml 10% Calcium Gluconate IV
- Use large IV access and give over 5 min
- Repeat ECG
- Consider further dose after 5 min if ECG changes persist

Insulin-Glucose IV Infusion
Glucose 25g with 10 units soluble insulin over 15 - 30 min IV (25g = 50mL 50% glucose; 125mL 20% glucose, 250mL 10% glucose)
If pre-treatment blood glucose < 7.0 mmol/L
Start 10% glucose infusion at 50mL/hour for 5 hours (25g)

Consider
Risk of hypoglycaemia

Salbutamol 10 - 20 mg nebulised

Consider
Life-threatening hyperkalaemia

*Sodium zirconium cyclosilicate
10g X 3/day oral for 72 HRS OR
*Patiromer
8.4g /day oral OR
*Calcium resorum
15g X 3/day oral

*Follow local practice

Consider Dialysis
Seek expert help

Monitor serum K+ and blood glucose

K+ ≥ 6.5 mmol/L despite medical therapy

Consider cause of hyperkalaemia and prevent recurrence

Emergency treatment of hyperkalaemia. ECG – electrocardiogram; VT ventricular tachycardia.

Fig. 4 – Treatment algorithm for management of hyperkalaemia in adults (adapted from the UK Renal Association Hyperkalaemia guideline 2020 https://renal.org/treatment-acute-hyperkalaemia-adults-updated-guideline-released/).

In-hospital prognostication of successful rewarming should be based on the HOPE or ICE score. The traditional in-hospital serum potassium prognostication is less reliable. In hypothermic cardiac arrest rewarming should be performed with ECLS, preferably with extra-corporeal membrane oxygenation (ECMO) over cardiopulmonary bypass (CPB). Non-ECLS rewarming should be initiated in a peripheral hospital if an ECLS centre cannot be reached within hours (e.g. 6 h).

Avalanche rescue
- Start with five ventilations in cardiac arrest, as hypoxia is the most likely cause of cardiac arrest (Fig. 7).
- Perform standard ALS if burial time is <60 min.
- Provide full resuscitative measures, including ECLS rewarming, for avalanche victims with duration of burial >60 min without evidence of an obstructed airway or additional un-survivable injuries.

Consider CPR to be futile in cardiac arrest with a burial time >60 min and additional evidence of an obstructed airway.
- In-hospital prognostication of successful rewarming should be based on the HOPE score. The traditional triage with serum potassium and core temperature (cut-offs 7 mmol/l and 30 °C, respectively) are less reliable.

Hyperthermia and malignant hyperthermia

Hyperthermia
- Measurement of core temperature should be available to guide treatment (Fig. 8).
- Heat syncope – remove patient to a cool environment, cool passively and provide oral isotonic or hypertonic fluids.
- Heat exhaustion – remove patient to a cool environment, lie them flat, administer IV isotonic or hypertonic fluids, consider additional
Heat stroke — a ‘cool and run’ approach is recommended:
- Remove patient to a cool environment.
- Lie them flat.
- Immediately active cool using whole body (from neck down) water immersion technique (1–2°C) until core temperature <39°C.
- Where water immersion is not available use immediately any active or passive technique that provides the most rapid rate of cooling.
- Administer IV isotonic or hypertonic fluids (with blood sodium ≤130 mmol/l up to 3 × 100 ml NaCl 3%).
- Consider additional electrolyte replacement with isotonic fluids. Substantial amounts of fluids may be required.
- In exertional heat stroke a cooling rate faster than 0.10°C/min is safe and desirable.
- Follow the ABCDE approach in any patient with deteriorating vital signs.

Thrombosis

Pulmonary embolism

Cardiac arrest prevention
- Follow the ABCDE approach.

Airway
- Treat life-threatening hypoxia with high-flow oxygen.

Breathing
- Consider pulmonary embolism (PE) in all patients with sudden onset of progressive dyspnoea and absence of known
Fig. 7 – Avalanche accident algorithm. Management of completely buried victims.

1. Core temperature may substitute if duration of burial is unknown.
2. Transport patient with injuries or potential complications (e.g. pulmonary oedema) to the most appropriate hospital.
3. Check for spontaneous breathing, pulse and any other movements for up to 60 seconds.
4. Use additional tools for detection of vital signs (end-tidal CO₂, arterial oxygen saturation (SaO₂), ultrasound) if available.
5. Transport patients with core temperature <30°C, systolic blood pressure <90mmHg or any other circulatory instability to a hospital with ECLS.
6. With deeply hypothermic patient (<28°C) consider delayed CPR if rescue is too dangerous and intermittent CPR with difficult transport.
7. If airway is patent, the additional presence of an air pocket is a strong predictor for survival.
8. If HOPE is not possible, serum potassium and core temperature (cut-offs 7 mmol/L and 30°C) can be used but may be less reliable.

Abbreviations: ALS Advanced life support, CPR cardiopulmonary resuscitation, ECLS extracorporeal life support, PEA pulseless electrical activity, pVT pulseless ventricular tachycardia, SaO₂ arterial oxygen saturation, VF ventricular fibrillation.

Circulation
- Obtain 12-lead ECG (exclude acute coronary syndrome, look for right ventricle strain).
- Identify haemodynamic instability and high-risk PE.
- Perform bedside echocardiography.
- Initiate anticoagulation therapy (heparin 80 IU/kg IV) during diagnostic process, unless signs of bleeding or absolute contraindications.
- Confirm diagnosis with computed tomographic pulmonary angiography (CTPA).
- Set-up a multidisciplinary team for making decisions on management of high-risk PE (depending on local resources).
- Give rescue thrombolytic therapy in rapidly deteriorating patients.
- Consider surgical embolectomy or catheter-directed treatment as alternative to rescue thrombolytic therapy in rapidly deteriorating patients.

Exposure
- Request information about past medical history, predisposing factors, and medication that may support diagnosis of pulmonary embolism:
 - Previous pulmonary embolism or deep venous thrombosis (DVT).
 - Surgery or immobilisation within the past four weeks.
 - Active cancer.
 - Clinical signs of DVT.
 - Oral contraceptive use or hormone replacement therapy.
 - Long-distance flights.

Cardiac arrest management
- Cardiac arrest commonly presents as PEA.
- Low ET\textsubscript{CO}\textsubscript{2} readings (below 1.7 kPa/13 mmHg) while performing high-quality chest compressions may support a diagnosis of pulmonary embolism, although it is a non-specific sign.
- Consider emergency echocardiography performed by a qualified sonographer as an additional diagnostic tool.
- Administer thrombolytic drugs for cardiac arrest when PE is the suspected cause of cardiac arrest.
- When thrombolytic drugs have been administered, consider continuing CPR attempts for at least 60–90 min before termination of resuscitation attempts.
- Use thrombolytic drugs or surgical embolectomy or percutaneous mechanical thrombectomy for cardiac arrest when PE is the known cause of cardiac arrest.
- Consider ECPR as a rescue therapy for selected patients with cardiac arrest when conventional CPR is failing in settings in which it can be implemented.
Coronary thrombosis

Prevent and be prepared (Fig. 9 and Supplementary Fig. S1):

- Encourage cardiovascular prevention to reduce the risk of acute events.
- Endorse health education to reduce delay to first medical contact.
- Promote layperson basic life support to increase the chances of bystander CPR.
- Ensure adequate resources for better management.
 - Improve quality management systems and indicators for better quality monitoring.

Detect parameters suggesting coronary thrombosis and activate the ST-elevation myocardial infarction (STEMI) network (Supplementary Fig. S2):

- Chest pain prior to arrest.
- Known coronary artery disease.
- Initial rhythm: VF, pulseless ventricular tachycardia (pVT).
- Post-resuscitation 12-lead ECG showing ST-elevation.

Resuscitate and treat possible causes (establish reperfusion strategy):

- Patients with sustained ROSC
 - STEMI patients:
 > Primary percutaneous coronary intervention (PCI) strategy
 ≤ 120 min from diagnosis: activate catheterisation laboratory and transfer patient for immediate PCI.
 > Primary PCI not possible in ≤120 min: perform pre-hospital thrombolysis and transfer patient to PCI centre (Fig. 9).
 - Non STEMI patients: individualise decisions considering patient characteristics, OHCA setting and ECG findings.
 > Consider quick diagnostic work-up (discard non-coronary causes and check patient condition).
 > Perform urgent coronary angiography (≤ 120 min) if ongoing myocardial ischaemia is suspected or the patient is hemodynamically/electrically unstable.
 > Consider delayed coronary angiography if there is no suspected ongoing ischaemia and the patient is stable
- Patients with no sustained ROSC: Assess setting and patient conditions and available resources
 - Futile: Stop CPR.
 - Not-futile: Consider patient transfer to a percutaneous coronary intervention (PCI) centre with on-going CPR (Fig. 9).
 > Consider mechanical compression and ECPR.
 > Consider coronary angiography.

Cardiac tamponade

- Decompress the pericardium immediately.
- Point of care echocardiography supports the diagnosis.
- Perform resuscitative thoracotomy or ultrasound guided pericardiocentesis.

Tension pneumothorax

- Diagnosis of tension pneumothorax in a patient with cardiac arrest or haemodynamic instability must be based on clinical examination or point of care ultrasound (POCUS).
- Decompress chest immediately by open thoracostomy when a tension pneumothorax is suspected in the presence of cardiac arrest or severe hypotension.
- Needle chest decompression serves as rapid treatment, it should be carried out with specific needles (longer, non-kinking).
- Any attempt at needle decompression under CPR should be followed by an open thoracostomy or a chest tube if the expertise is available.
- Chest decompression effectively treats tension pneumothorax and takes priority over other measures.

Toxic agents

Prevention

- Poisoning rarely causes cardiac arrest.
- Manage hypertensive emergencies with benzodiazepines, vasodilators and pure alpha-antagonists.
- Drug induced hypotension usually responds to IV fluids.
- Use specific treatments where available in addition to the ALS management of arrhythmias.
- Provide early advanced airway management.
- Administer antidotes, where available, as soon as possible.

Cardiac arrest treatment

- Have a low threshold to ensure your personal safety (Fig. 10).
- Consider using specific treatment measures as antidotes, decontamination and enhanced elimination.
- Do not use mouth-to-mouth ventilation in the presence of chemicals such as cyanide, hydrogen sulphide, corrosives and organophosphates.
- Exclude all reversible causes of cardiac arrest, including electrolyte abnormalities which can be indirectly caused by a toxic agent.
- Measure the patient’s temperature because hypo- or hyperthermia may occur during drug overdose.
- Be prepared to continue resuscitation for a prolonged period of time. The toxin concentration may fall as it is metabolised or excreted during extended resuscitation measures.
- Consult regional or national poison centres for information on treatment of the poisoned patient.
- Consider ECPR as a rescue therapy for selected patients with cardiac arrest when conventional CPR is failing in settings in which it can be implemented.

Special settings

Healthcare facilities

Cardiac arrest in the operating room (OR)

- Recognise cardiac arrest by continuous monitoring.
- Inform the surgeon and the theatre team. Call for help and the defibrillator.
- Initiate high-quality chest compressions and effective ventilation.
- Follow the ALS algorithm with a strong focus on reversible causes, especially hypovolaemia (anaphylaxis, bleeding), hypoxia, tension-pneumothorax, thrombosis (pulmonary embolism).
- Use ultrasound to guide resuscitation.
- Adjust the height of the OR table to enable high-quality CPR.
- Check the airway and review the ETCO₂ tracing.
- Administer oxygen with a FiO₂ 1.0.
- Open cardiac compression should be considered as an effective alternative to closed chest compression.
Fig. 9 – Management of out-of-hospital cardiac arrest in the setting of suspected coronary thrombosis. *Note that prolonged or traumatic resuscitation is a relative contraindication for fibrinolysis. **Individualised decision based on careful evaluation of the benefit/futility ratio, available resources and team expertise.

Abbreviations: OHCA, out-of-hospital cardiac arrest; STEMI, ST-elevation myocardial infarction; ROSC, return of spontaneous circulation; PCI, percutaneous coronary intervention; CPR: cardiopulmonary resuscitation.
Consider ECPR as a rescue therapy for selected patients with cardiac arrest when conventional CPR is failing.

Cardiac surgery

Prevent and be prepared
- Ensure adequate training of the staff in resuscitation technical skills and ALS (Fig. 11).
- Ensure equipment for emergency re-sternotomy is available in the ICU.
- Use safety checklists.

Detect cardiac arrest and activate cardiac arrest protocol:
- Identify and manage deterioration in the postoperative cardiac patient.
- Consider echocardiography.
- Confirm cardiac arrest by clinical signs and pulseless pressure waveforms.
- Shout for help and activate cardiac arrest protocol.

Resuscitate and treat possible causes:
- Resuscitate according to ALS MODIFIED algorithm:
 - VF/pVT → Defibrillate: apply up to 3 consecutive shocks (<1 min).
 - Asystole/extreme bradycardia → Apply early pacing (<1 min).
 - PEA → Correct potentially reversible causes. If paced rhythm, turn off pacing to exclude VF.
- No ROSC:
 - Initiate chest compression and ventilation.
 - Perform early resternotomy (<5 min).
 - Consider circulatory support devices and ECPR (Fig. 11).

Catheterisation laboratory

Prevent and be prepared (Fig. 12):
- Ensure adequate training of the staff in resuscitation technical skills and ALS.
- Use safety checklists.

Detect cardiac arrest and activate cardiac arrest protocol:
- Check patient’s status and monitored vital signs periodically.
- Consider cardiac echocardiography in case of haemodynamic instability or suspected complication.
- Shout for help and activate cardiac arrest protocol.

Resuscitate and treat possible causes:
- Resuscitate according to the MODIFIED ALS algorithm:
 - VF/pVT cardiac arrest → Defibrillate (apply up to 3 consecutive shocks) → no ROSC → resuscitate according to ALS algorithm.
 - Asystole/PEA → resuscitate according to ALS algorithm.
- Check and correct potentially reversible causes, including the use of echocardiography and angiography.
- Consider mechanical chest compression and circulatory support devices (including ECPR).

Fig. 11 – Advanced life support (ALS) algorithm for postoperative cardiac arrest following cardiac surgery. ALS, advanced life support, VF, ventricular fibrillation; PVT: pulseless ventricular tachycardia; CPR, cardiopulmonary resuscitation; ROSC, return of spontaneous circulation; PEA: pulseless electrical activity. ** Consider IABP to support CPR or extracorporeal life support as an alternative if resternotomy is not feasible or fails to revert cardiac arrest.
Fig. 12 – Management of cardiac arrest in the catheterisation laboratory. ALS, advanced life support; VF, ventricular fibrillation; PVT: pulseless ventricular tachycardia; CPR, cardiopulmonary resuscitation; ROSC, return of spontaneous circulation; PEA: pulseless electrical activity.
Dialysis unit
- Follow the universal ALS algorithm.
- Assign a trained dialysis nurse to operate the haemodialysis (HD) machine.
- Stop dialysis and return the patient's blood volume with a fluid bolus.
- Disconnect from the dialysis machine (unless defibrillation-proof) in accordance with the International Electrotechnical Committee (IEC) standards.
- Leave dialysis access open to use for drug administration.
- Dialysis may be required in the early post resuscitation period.
- Provide prompt management of hyperkalaemia.
- Avoid excessive potassium and volume shifts during dialysis.

Dentistry
- Causes of cardiac arrest usually relate to pre-existing comorbidities, complications of the procedure or allergic reactions.
- All dental care professionals should undergo annual practical training in the recognition and management of medical emergencies, including the delivery of CPR, incl. basic airway management and the use of an AED.
- Check patient's mouth and remove all solid materials from the oral cavity (e.g. retractor, suction tube, tampons). Prevention of foreign body airway obstruction should precede positioning.
- Recline the dental chair into a fully horizontal position. If reduced venous return or vasodilatation has caused loss of consciousness (e.g. vasovagal syncope, orthostatic hypotension), cardiac output can be restored.
- Place a stool under the backrest for stabilisation.
- Start chest compressions immediately while patient lying flat on the chair.
- Consider the over-the-head technique of CPR if access to either side of chest is limited.
- Basic equipment for a standard CPR including a bag-valve-mask device should be available immediately.

Transportation

Inflight cardiac arrest
- Medical professional help should be sought (in-flight announcement).
- The rescuer should kneel in the leg-space in front of the aisle seats to perform chest compressions if the patient cannot be transferred within a few seconds to an area with adequate floor space (galley).
- Overhead-CPR is a possible option in limited space environments.
- Airway management should be based on the equipment available and the expertise of the rescuer.
- If the flight plan is over open-water with high possibility of ROSC during an ongoing resuscitation consider an early diversion.
- Consider risks of diversion if ROSC is unlikely and give appropriate recommendations to the flight crew.
- If CPR is terminated (no ROSC) a flight diversion should not usually be performed.

Helicopter emergency medical services (HEMS) and air ambulances
- Proper pre-flight-evaluation of the patient, early recognition and communication within the team, early defibrillation, high-quality CPR with minimal interruption of chest compressions, and treatment of reversible causes before flight are the most important interventions for the prevention of CPR during HEMS missions.
- Check the patient status properly before flight. Sometimes ground-based transport might be a suitable alternative, especially for patients with high-risk of cardiac arrest.
- Check security of the airway and ventilator connections prior to flight.
- Pulse oximetry (SpO₂) monitoring and oxygen supplementation should be available immediately if not already attached.
- CPR should be performed as soon as possible, over-the-head-CPR (OTH-CPR) might be possible depending on the type of helicopter.
- If cabin size does not allow high-quality CPR, consider immediate landing.
- Always consider attaching a mechanical CPR device before flight.
- Consider three stacked shocks in case of shockable rhythm during flight.
- Defibrillation during flight is safe.

Cruise ship
- Use all medical resources immediately (personal, equipment).
- Activate HEMS if close to the coastline.
- Consider early telemedicine support.
- Have all equipment needed for ALS available on board.
- In case of insufficient number of health care professionals to treat CA, call for further medical staff via an on-board announcement.

Cardiac arrest in sport

Planning
- All sports and exercise facilities should undertake a medical risk assessment of the risk of sudden cardiac arrest.
- Where there is a raised risk, mitigation must include resuscitation planning to include:
 - Staff and members training in the recognition and management of cardiac arrest.
 - Direct provision of an AED or clear directions to the nearest public access AED.

Implementation
- Recognise collapse.
- Gain immediate and safe access to the Field of Play.
- Call for help and activate EMS.
- Assess for signs of life.
- If no signs of life:
 - commence CPR.
 - access an AED and defibrillate if indicated.
- If ROSC occurs, carefully observe and monitor the casualty until advanced medical care arrives.
- If there is no ROSC:
 - Continue cardio-pulmonary resuscitation and defibrillation until advanced medical care arrives.
 - In a sport arena, consider moving patient to a less exposed position and continue resuscitation. This should be accomplished with minimal interruption to chest compressions.

Prevention
- Do not undertake exercise, especially extreme exercise or competitive sport, if feeling unwell.
Follow medical advice in relation to the levels of exercise or sport competition.
Consider cardiac screening for young athletes undertaking high level competitive sport.

Drowning

Initial rescue
- Undertake a dynamic risk assessment considering feasibility, chances of survival and risks to the rescuer:
 - Submersion duration is the strongest predictor of outcome.
 - Salinity has an inconsistent effect on outcome.
- Assess consciousness and breathing:
 - If conscious and/or breathing normally, aim to prevent cardiac arrest.
 - If unconscious and not breathing normally, start resuscitation.

Cardiac arrest prevention

Airway
- Ensure a patent airway.
- Treat life threatening hypoxia with 100% inspired oxygen until the arterial oxygen saturation or the partial pressure of arterial oxygen can be measured reliably.
- Once SpO2 can be measured reliably or arterial blood gas values are obtained, titrate the inspired oxygen to achieve an arterial oxygen saturation of 94–98% or arterial partial pressure of oxygen (PaO2) of 10–13 kPa (75–100 mmHg).

Breathing
- Assess respiratory rate, accessory muscle use, ability to speak in full sentences, pulse oximetry, percussion and breath sounds; request chest X-ray.
- Consider non-invasive ventilation if respiratory distress and safe to do so.
- Consider invasive mechanical ventilation if respiratory distress and unsafe or unable to initiate non-invasive ventilation.
- Consider extracorporeal membrane oxygenation if poor response to invasive ventilation.

Circulation
- Assess heart rate and blood pressure, attach ECG.
- Obtain IV access.
- Consider IV fluids and/or vasoactive drugs to support the circulation.

Disability
- Assess using AVPU or GCS.

Exposure
- Measure core temperature.
- Initiate hypothermia algorithm if core temperature <35°C.

Cardiac arrest
- Start resuscitation as soon as safe and practical to do so. If trained and able this might include initiating ventilations whilst still in the water or providing ventilations and chest compressions on a boat.
- Start resuscitation by giving 5 rescue breaths/ventilations using 100% inspired oxygen if available.
- If the person remains unconscious, without normal breathing, start chest compressions.
- Alternate 30 chest compressions to 2 ventilations.
- Apply an AED if available and follow instructions.
- Intubate the trachea if able to do so safely.
- Consider ECPR in accordance with local protocols if initial resuscitation efforts are unsuccessful.

Mass casualty incidents
- Identify hazards and immediately request assistance if necessary.
- Use adequate personal protection equipment (PPE) (e.g. bulletproof vest, respirator, long-sleeved gown, eye and face protection) depending on specific risks on scene.
- Reduce secondary risks to other patients and providers.
- Use a locally established triage system to prioritise treatment.
- Perform life-saving interventions in patients triaged as “immediate” (highest priority) to prevent cardiac arrest.
- Consider assigning a higher triage risk level to elderly and to survivors of high-energy trauma in order to reduce preventable deaths.
- Healthcare professionals must be regularly trained to use the triage protocols during simulations and live exercises.

Special patients

Asthma and COPD

Cardiac arrest prevention

Airway
- Ensure a patent airway.
- Treat life threatening hypoxia with high flow oxygen (Fig. 13).
- Titrate subsequent oxygen therapy with pulse oximetry (SpO2 94–98% for asthma; 88–92% for chronic obstructive pulmonary disease (COPD)).

Breathing
- Assess respiratory rate, accessory muscle use, ability to speak in full sentences, pulse oximetry, percussion and breath sounds; request chest X-ray.
- Look for evidence of pneumothorax/tension pneumothorax.
- Provide nebulised bronchodilators (oxygen driven for asthma, consider air driven for COPD).
- Administer steroids (Prednisolone 40–50 mg or hydrocortisone 100 mg).
- Consider IV magnesium sulphate for asthma.
- Seek senior advice before giving IV aminophylline or salbutamol.

Circulation
- Assess heart rate and blood pressure, attach ECG.
- Obtain vascular access.
- Consider IV fluids.

Cardiac arrest treatment
- Administer high concentration oxygen.
- Ventilate with respiratory rate (8–10 min⁻¹) and sufficient tidal volume to cause the chest to rise.
Fig. 13 – Management of acute asthma in adults in hospital. 2019. (SIGN publication no. 158). Reproduced with permission from the Scottish Intercollegiate Guidelines Network (SIGN). Edinburgh: SIGN; available from URL: http://www.sign.ac.uk.
• Intubate the trachea if able to do so safely.
• Check for signs of tension pneumothorax and treat accordingly.
• Disconnect from positive pressure ventilation if relevant and apply pressure to manually reduce hyper-inflation.
• Consider IV fluids.
• Consider E-CPR in accordance with local protocols if initial resuscitation efforts are unsuccessful.

Neurological disease
• There are no modifications required in the BLS and ALS management of cardiac arrest from a primary neurological cause.
• Following ROSC, consider clinical features such as young age, female sex, non-shockable rhythm and neurological antecedents such as headache, seizures, and focal neurological deficit when suspecting a neurological cause of cardiac arrest.
• Early identification of a neurological cause can be achieved by performing a brain CT-scan at hospital admission, before or after coronary angiography.
• In the absence of signs or symptoms suggesting a neurological cause (e.g. headache, seizures or neurological deficits) or if there is clinical or ECG evidence of myocardial ischaemia, coronary angiography is undertaken first, followed by CT scan in the absence of causative lesions.

Obesity
• Delivery of effective CPR in obese patients may be challenging due to a number of factors:
 ○ patient access and transportation
 ○ vascular access
 ○ airway management
 ○ quality of chest compressions
 ○ efficacy of vasoactive drugs
 ○ efficacy of defibrillation

• Provide chest compressions up to a maximum of 6 cm.
• Obese patients lying in a bed do not necessarily need to be moved down onto the floor.
• Change the rescuers performing chest compression more frequently.
• Consider escalating defibrillation energy to maximum for repeated shocks.
• Manual ventilation with a bag-mask should be minimised and be performed by experienced staff using a two-person technique.
• An experienced provider should intubate the trachea early so that the period of bag-mask ventilation is minimised.

Pregnancy

Prevention of cardiac arrest in the deteriorating pregnant patient
• Use a validated obstetric early warning scoring system when caring for the ill-pregnant patient.
• Use a systematic ABCDE approach to assess and treat the pregnant patient.
• Place the patient in the left lateral position or manually and gently displace the uterus to the left to relieve aortocaval compression.
• Give oxygen guided by pulse oximetry to correct hypoxaemia.
• Give a fluid bolus if there is hypotension or evidence of hypovolaemia.
• Immediately re-evaluate the need for any drugs being given.
• Seek expert help early – obstetric, anaesthetic, critical care and neonatal specialists should be involved early in the resuscitation.
• Identify and treat the underlying cause of cardiac arrest, e.g. control of bleeding, sepsis.
• Give intravenous tranexamic acid 1 g IV for postpartum haemorrhage.

Modification for advanced life support in the pregnant patient
• Call for expert help early (including an obstetrician and neonatologist).
• Start basic life support according to standard guidelines.
• Use the standard hand position for chest compressions on the lower half of the sternum if feasible.
• If over 20 weeks pregnant or the uterus is palpable above the level of the umbilicus:
 ○ Manually displace the uterus to the left to remove aortocaval compression.
 ○ If feasible, add left lateral tilt – the chest should remain on support on a firm surface (e.g. in the operating room). The optimal angle of tilt is unknown. Aim for a tilt between 15 and 30 degrees. Even a small amount of tilt may be better than no tilt. The angle of tilt used needs to enable high-quality chest compressions and if needed allow caesarean delivery of the fetus.
• Prepare early for emergency hysterostomy early – the fetus will need to be delivered if immediate (within 4 min) resuscitation efforts fail.
• If over 20 weeks pregnant or the uterus is palpable above the level of the umbilicus and immediate (within 4 min) resuscitation is unsuccessful, deliver the fetus by emergency caesarean section aiming for delivery within 5 min of collapse.
• Place defibrillator pads in the standard position as far as possible and use standard shock energies.
• Consider early tracheal intubation by a skilled operator.
• Identify and treat reversible causes (e.g. haemorrhage). Focused ultrasound by a skilled operator may help identify and treat reversible causes of cardiac arrest.
• Consider extracorporeal CPR (ECPR) as a rescue therapy if ALS measures are failing.

Preparation for cardiac arrest in pregnancy
Healthcare settings dealing with cardiac arrest in pregnancy should:
• have plans and equipment in place for resuscitation of both the pregnant woman and the newborn.
• ensure early involvement of obstetric, anaesthetic, critical care and neonatal teams.
• ensure regular training in obstetric emergencies.

Evidence informing the guidelines

Special causes

Hypoxia
Cardiac arrest caused by pure hypoxaemia is uncommon. It is seen more commonly as a consequence of asphyxia, which accounts for most of the non-cardiac causes of cardiac arrest. There are many causes of asphyxial cardiac arrest (Table 1); although there is usually a combination of hypoxaemia and hypercarbia, it is the hypoxaemia that ultimately causes cardiac arrest.9 In an epidemiological study of
44,000 OHCA's in Osaka, Japan, asphyxia accounted for 6% of cardiac arrests with a resuscitation attempt, hanging 4.6% and drowning 2.4%. Evidence for the treatment of asphyxial cardiac arrest is based mainly on observational studies. There are very few data comparing different therapies for the treatment of asphyxial cardiac arrest although there are data comparing standard CPR with compression-only CPR. The Guidelines for clinical practice are based largely on expert opinion.

Pathophysiological mechanisms

If breathing is completely prevented by airway obstruction or apnoea, consciousness will be lost when oxygen saturation in the arterial blood reaches about 60%. The time taken to reach this concentration is difficult to predict, but based on mathematical modelling is likely to be of the order 1–2 min. Based on animal experiments of cardiac arrest caused by asphyxia, pulseless electrical activity (PEA) will occur in 3–11 min. Asystole will ensue several minutes later. In comparison with simple apnoea, the exaggerated respiratory movements that frequently accompany airway obstruction will increase oxygen consumption resulting in more rapid arterial blood oxygen desaturation and a shorter time to cardiac arrest. Complete airway obstruction after breathing air will result in PEA cardiac arrest in 5–10 min. An initial monitored rhythm of VF occurs rarely after asphyxial cardiac arrest — in two of the largest series of hanging-associated out-of-hospital cardiac arrests (OHCA's), one from Melbourne, Australia, and the other from Osaka, Japan, just 20 (0.6%) of 3320 patients were in VF.

Compression-only versus conventional CPR

ILCOR and the ERC suggest, that bystanders who are trained, able, and willing to give rescue breaths and chest compressions do so for all adult patients in cardiac arrest (weak recommendation, very-low-certainty evidence). Observational studies suggest conventional CPR even more where there is a non-cardiac cause of cardiac arrest.

Outcome

Survival after cardiac arrest from asphyxial is rare and most survivors sustain severe neurological injury. The Osaka study documented one-month survival and neurologically favourable outcome after cardiac arrest following: asphyxia 14.3% and 2.7%; hanging 4.2% and 0.9%; and drowning 1.1% and 0.4%.

Of eight published series that included a total of 4189 patients with cardiac arrest following hanging where CPR was attempted, the overall survival rate was 4.3%; there were just 45 (1.1%) survivors with a favourable neurological outcome (CPC 1 or 2); 135 other survivors were documented to be CPC 3 or 4. When resuscitating these patients, rescuers are frequently able to achieve ROSC but subsequent neurologically intact survival is rare. Those who are unconscious but have not progressed to a cardiac arrest are much more likely to make a good neurological recovery.

Hypovolaemia

Hypovolaemia is a potentially treatable cause of cardiac arrest that usually results from a reduced intravascular volume (i.e. haemorrhage), but relative hypovolaemia may also occur in patients with severe vasodilation (e.g. anaphylaxis, sepsis, spinal cord injury). Hypovolaemia from mediator-activated vasodilation and increased capillary permeability is a major factor causing cardiac arrest in severe anaphylaxis. Hypovolaemia from blood loss, is a leading cause of death in traumatic cardiac arrest. External blood loss is usually obvious, e.g. trauma, haematoma, haemoptysis, but may be more challenging to diagnose when occult, e.g. gastrointestinal bleeding or rupture of an aortic aneurysm. Patients undergoing major surgery are at high-risk from hypovolaemia due to post-operative haemorrhage and must be appropriately monitored (see peroperative cardiac arrest). Depending on the suspected cause, initiate volume therapy with warmed blood products and/or crystalloids, in order to rapidly restore intravascular volume. At the same time, initiate immediate intervention to control haemorrhage, e.g. surgery, endoscopy, endovascular techniques, or treat the primary cause (e.g. anaphylactic shock). In the initial stages of resuscitation use any crystalloid solution that is immediately available, if haemorrhage is likely aim for early blood transfusion and vasopressor support. If there is a qualified sonographer able to perform ultrasound with minimum interruption to chest compressions, it may be considered as an additional diagnostic tool in hypovolaemic cardiac arrest. Treatment recommendations for cardiac arrest and peri arrest situations in trauma, anaphylaxis and sepsis are addressed in separate sections because of the need for specific therapeutic approaches.

Table 1 – Causes of asphyxial cardiac arrest.

<table>
<thead>
<tr>
<th>Cause</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trauma</td>
<td>4.6%</td>
</tr>
<tr>
<td>Hanging</td>
<td>2.4%</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>14.3%</td>
</tr>
<tr>
<td>Asthma</td>
<td>2.7%</td>
</tr>
<tr>
<td>Airway obstruction, soft tissues (coma), laryngospasm, asphyxiation</td>
<td>4.2%</td>
</tr>
<tr>
<td>Drowning</td>
<td>0.9%</td>
</tr>
<tr>
<td>Central hypoxia – brain or spinal cord injury</td>
<td>1.1%</td>
</tr>
<tr>
<td>Impaired alveolar ventilation from neuromuscular disease</td>
<td>0.4%</td>
</tr>
<tr>
<td>Traumatic asphyxia or compression asphyxia</td>
<td>0.4%</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>1%</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>2.7%</td>
</tr>
<tr>
<td>High altitude</td>
<td>4.3%</td>
</tr>
<tr>
<td>Avalanche burial</td>
<td>2.4%</td>
</tr>
<tr>
<td>Anaemia</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

● Needle decompression in traumatic tension pneumothorax? (214 titles screened/7abstracts screened/5 publications selected).

● REBOA versus aortic occlusion of the descending aorta in TCA or peri-arrest (1056 titles screened/156 abstracts screened/11 publications selected).

Epidemiology and pathophysiology
Traumatic cardiac arrest (TCA) carries a high mortality. Registry data for survival range from 1.6% to 32%. The considerable variation in reported survival mainly reflects heterogeneity in entry criteria but also in case mix and care in different systems. In survivors, the neurological outcome appears to be much better than in other causes of cardiac arrest. The reversible causes of TCA are uncontrolled haemorrhage (48%); tension pneumothorax (13%); asphyxia (13%); pericardial tamponade (10%). The prevalent initial heart rhythms found in TCA are either PEA or asystole, depending on the time interval between circulatory arrest and the first electrocardiogram (ECG) recording PEA (66%); asystole (30%); VF (6%).

Diagnosis
Patients with TCA will usually present with loss of consciousness, agonal or absent spontaneous breathing and absence of a central pulse. A peri-arrest state is characterised by cardiovascular instability, hypotension, loss of peripheral pulses and a deteriorating conscious level, without obvious underlying central nervous system problems. If untreated this state is likely to progress to cardiac arrest. The use of ultrasound may help to verify the cause of the TCA and direct the resuscitative efforts accordingly.

Prognostic factors and withholding resuscitation
There are no reliable predictors of survival for TCA. Factors that are associated with survival include the presence of reactive pupils, respiratory activity, spontaneous movements and an organised ECG rhythm. Short duration of CPR, short prehospital times, penetrating chest injury, witnessed arrest and the presence of a shockable rhythm are also associated with positive outcomes. Children presenting with TCA have a better outcome than adults.

The American College of Surgeons and the National Association of EMS physicians recommend withholding resuscitation in situations where death is inevitable or established and in trauma patients presenting with apnoea, pulselessness and without organised ECG activity. However, neurologically intact survivors initially presenting in this state have been reported. We therefore recommend the following approach:

Consider withholding resuscitation in TCA in any of the following conditions:

- no signs of life within the preceding 15 min.
- massive trauma incompatible with survival (e.g. decapitation, penetrating heart injury, loss of brain tissue).

We suggest termination of resuscitative efforts if there is:

- no ROSC after reversible causes have been addressed.
- no detectable ultrasonographic cardiac activity in PEA after reversible causes have been addressed.

Initial management steps

Pre-hospital care
The key decision to be made in the prehospital environment is establish whether the cardiac arrest is caused by trauma or by an underlying medical problem. If TCA cannot be confirmed, standard ALS guidelines apply. Short pre-hospital times are associated with increased survival rates for major trauma and traumatic cardiac arrest.

Hospital care
Successful treatment of TCA requires a team approach with all measures carried out in parallel rather than sequentially. The emphasis lies on rapid treatment of all potentially reversible causes. Fig. 2 shows the traumatic cardiac (peri-)arrest causes of the European Resuscitation Council (ERC), which is based on the universal ALS algorithm.

Effectiveness of chest compressions
In cardiac arrest caused by hypovolaemia, traumatic tamponade or tension pneumothorax, chest compressions are unlikely to be as effective as in normovolaemic cardiac arrest and may reduce residual spontaneous cardiac output. Therefore, chest compressions take a lower priority than addressing the reversible causes. Chest compressions must not delay immediate treatment of reversible causes. A retrospective cohort study analysing data from the Trauma Quality Improvement Program (TQIP) database, a nationwide trauma registry in the USA, between 2010 and 2016 compared open cardiac compressions to close chest compressions in IHCA patients admitted with signs of life. Results in this specific patient group showed a favourable outcome for the patients receiving open cardiac compressions versus closed chest compressions.

Hypovolaemia
The treatment of severe hypovolaemic shock has several elements. The main principle is to achieve immediate haemostasis. Temporary haemorrhage control can be lifesaving. In hypovolemic TCA, immediate restoration of the circulating blood volume with blood products is mandatory. Prehospital transfusion of fresh plasma and packed red cells yields a significant survival benefit if the journey time to the receiving hospital exceeds 20 min.

Compressible external haemorrhage can be treated with direct or indirect pressure, pressure dressings, tourniquets and topical haemostatic agents. Non-compressible haemorrhage is more difficult to address and splints (pelvic splint), blood products, IV fluids and tranexamic acid can be used while transferring the patient to surgical haemorrhage control.

- Immediate aortic occlusion is recommended as a last resort measure in patients with exsanguinating and uncontrollable infra-diaphragmatic torso haemorrhage. This can be achieved through Resuscitative Thoracotomy (RT) and cross-clamping the descending aorta or Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA). There is no evidence for one technique being superior over the other.

- Neurogenic shock as a sequel of spinal cord injury (SCI) can aggravate hypovolemia due to blood loss in trauma patients. Even moderate blood loss can cause cardiac arrest in the presence of SCI due to the limited compensatory capacity. Indicators for SCI in severely injured patients are warm peripheries and loss of reflexes below the injured segment, severe hypotension and a low heart rate. The cornerstones of treatment are fluid replacement and IV vasopressors.

Hypoxia
In TCA, hypoxaemia can be caused by airway obstruction, traumatic asphyxia or impact brain apnoea. Impact brain apnoea is an
underestimated cause of morbidity and mortality in trauma but not necessarily associated with an un-survivable brain injury. Impact brain apnoea may aggravate the course of traumatic brain injury and can lead to asphyxiation if left untreated. Effective airway management and ventilation can prevent and reverse hypoxic cardiac arrest.

However, controlled ventilation in circulatory compromised patients is associated with major risks related to the side effect of anaesthetics and increase in intrathoracic pressure which may lead to further decrease in residual cardiac output by impeding venous return to the heart, particularly in severely hypovolaemic patients. Reduced diastolic filling in cardiac tamponade, conversion of pneumothorax into a tension pneumothorax, and increase in blood loss from venous bleeding sites.

Low tidal volumes may help optimise cardiac preload. Ventilation should be monitored with capnography and adjusted to achieve normocapnia.

Tension pneumothorax

To decompress the chest in TCA, perform bilateral thoracostomies in the 4th intercostal space (ICS), allowing extension to a clamshell thoracotomy if required. Alternatively, a needle thoracocentesis can be attempted (see corresponding guideline section). In the presence of positive pressure ventilation, thoracostomies are likely to be more effective than needle thoracocentesis and quicker than inserting a chest tube.

Cardiac tamponade

Cardiac tamponade is a frequent cause of cardiac arrest in penetrating chest trauma and immediate resuscitative thoracotomy (RT) via a clamshell or left anterolateral incision, is indicated to restore circulation. The chance of survival is about 4 times higher in cardiac stab wounds than in gunshot wounds.

The prerequisites for a successful RT can be summarized as "four E rule" (4E):
- Expertise: teams that perform RT must be led by a highly trained and competent healthcare practitioner. These teams must operate under a robust governance framework.
- Equipment: adequate equipment to carry out RT and to deal with the intrathoracic findings is mandatory.
- Environment: ideally RT should be carried out in an operating theatre. RT should not be carried out if there is inadequate physical access to the patient, or if the receiving hospital is not easy to reach.
- Elapsed time: the time from loss of vital signs to commencing a RT should not be longer than 15 min.

If any of the four criteria is not met, RT is futile and exposes the team to unnecessary risks. RT is also a viable therapeutic option in the prehospital environment.

Subsequent management and treatment

The principle of ‘damage control resuscitation’ has been adopted in trauma resuscitation for uncontrolled haemorrhage. Damage control resuscitation combines permissive hypotension and haemostatic resuscitation with damage control surgery. Limited evidence and general consensus have supported a conservative approach to IV fluid infusion, with permissive hypotension until surgical haemostasis is achieved. Permissive hypotension allows IV fluid administration to a volume sufficient to maintain a radial pulse. Caution is advised patients with traumatic brain injury were a raised intracranial pressure may require a higher cerebral perfusion pressure. The duration of hypotensive resuscitation should not exceed 60 min, because the risks of irreversible organ damage then exceed its intended benefits. Haemostatic resuscitation is the very early use of blood products as primary resuscitation fluid to prevent exsanguination and trauma-induced coagulopathy. Tranexamic acid (TXA) (loading dose 1 g IV over 10 min followed by infusion of 1 g over 8 h) increases survival from traumatic haemorrhage. It is most effective when administered within the first hour and certainly within the first three hours following trauma. TXA should not be started any later than four hours after the injury as it then may increase mortality.

Diagnostics

Sonography should be used in the evaluation of the compromised trauma patient to target lifesaving interventions if the cause of shock cannot be diagnosed clinically. Haemoperitoneum, haemo- or pneumothorax and cardiac tamponade can be diagnosed within minutes.

Anaphylaxis

This guideline is specific for the initial treatment of adult patients with anaphylaxis or suspected anaphylaxis by clinicians. A precise definition of anaphylaxis is not important for its emergency treatment. Anaphylaxis is a serious systemic allergic reaction that is rapid in onset and may cause death. The incidence of anaphylaxis is increasing globally, whereas the case fatality rate has remained stable or decreased, with an overall population risk of death of about 0.5–1 per million. Foods (especially in children), drugs and insect bites are the commonest triggers.

This anaphylaxis guidance is based on the most recent First Aid ILCOR CoSTR, guidelines and updates from the World Allergy Organisation Anaphylaxis Committee, European Academy of Allergy and Clinical Immunology (EAACI), North American Practice Parameter, Australasian Society of Clinical Immunology and Allergy (ASCIA), and updates from the World Allergy Organisation Anaphylaxis guidelines, accessed 10 August 2020, recent guidance on perioperative allergic reactions, the findings from the UK National Audit Project of perioperative anaphylaxis, and our understanding of the pathophysiology of anaphylaxis. We completed a focused literature search up to July 2020 to identify any new relevant studies. The evidence supporting specific interventions for the treatment of anaphylaxis is limited with few RCTs. The majority of recommendations are based on observational data, good practice statements and expert consensus.

Recognition of anaphylaxis

Anaphylaxis causes life threatening airway (swollen lips, tongue, uvula), breathing (dyspnoea, wheeze, bronchospasm, stridor, reduced peak flow, hypoxaemia) and circulation problems (hypotension, cardiac arrest) with or without skin or mucosal changes (generalised urticaria, flushing or itching) as part of an allergic reaction. Skin and mucosal changes are not always present or obvious to the rescuer and severe bronchospasm, hypotension, or rarely sudden cardiac arrest can be the first features. Knowledge of the patient’s allergy history and triggers can help make the diagnosis, but this will not always be known.

Remove or stop the trigger if possible

Based on expert consensus, stop any drug suspected of causing anaphylaxis. Remove the stinger after a bee sting – early removal is
more important than the method of removal. Do not delay definitive treatment if removing the trigger is not feasible.

Give intramuscular adrenaline early and repeat after 5 min if necessary

Adrenaline is the most important drug for the treatment of anaphylaxis and is the first line treatment according to all current guidelines for anaphylaxis based on both its alpha- (vasoconstrictor) and beta-(bronchodilator, inotropic, mast cell stabilisation) agonist properties. Intramuscular (IM) adrenaline works within minutes and adverse effects are extremely rare with the correct doses. The best site for IM injection is the anterolateral aspect of the middle third of the thigh. The available evidence for adrenaline and the recommended doses is weak and based on observational data and expert consensus. The EAACI suggests Intramuscular adrenaline (1 mg/ml) should be given at a dose of 0.01 ml kg⁻¹ of body weight to a maximum total dose of 0.5 ml. These ERC guidelines recommend a dose of 0.5 mg IM in adults based on expert opinion. Adrenaline auto-injectors are also available – auto-injector devices are manufacturer specific for preparation, mechanism of injection and dose delivery (0.3 mg and 0.15 mg are the commonest doses). These can be used as an alternative to a syringe, needle and ampoule – follow the manufacturer instructions on how to use them. This ERC guideline does not address the choice, prescription, dosing, and instructions for self-use of adrenaline auto-injectors by those at risk of anaphylaxis.

Based on the available evidence time to effect, the variability in response to the first dose of adrenaline, the observed need for a second dose reported to be in about 10–30% of cases, variable EMS response times, and exiting international guideline recommendations, we suggest repeating the IM adrenaline dose if there is no improvement in the patient’s condition after about 5 min.

Ensure the patient is lying and do not suddenly sit or stand the patient up

Observational data from a detailed review of 214 individual cases of death from anaphylaxis referred to Coroner’s in the UK observed cardiovascular collapse occurred when some individuals with out-of-hospital anaphylaxis who had clinical signs of a low blood pressure sat- or stood-up or were sat- or stood-up by rescuers. Based on this limited evidence, expert consensus and existing guidelines we suggest:

- Patients with Airway and Breathing problems may prefer to sit up as this will make breathing easier.
- Lying flat with or without leg elevation is helpful for patients with a low blood pressure.
- Patients who are breathing and unconscious should be placed on their side (recovery position).
- Pregnant patients should lie on their left side to prevent aortocaval compression.

Give intravenous fluids

Anaphylaxis can cause hypotension due to vasodilation, redistribution of blood between vascular compartments, and fluid extravasation and correcting for fluid losses in addition to adrenaline is based on experience of managing shock in other settings such as sepsis. In line with these guidelines we suggest the use of either balanced crystalloids or 0.9% sodium chloride bolus doses and further doses based on haemodynamic response. The first resuscitation fluid bolus should be about 500 ml over 5–10 min. Expert opinion suggests patients with refractory anaphylaxis may need large volumes of fluid resuscitation. Emerging observational evidence suggests that anaphylaxis can impair stroke volume and that improves with early use of fluids.

Give oxygen

Oxygen therapy to correct hypoxaemia is a standard part of resuscitation. As for other emergency conditions, high flow oxygen should be given early and once an oxygen saturation can be measured reliably with a pulse oximeter the inspired oxygen should be titrated to target an oxygen saturation of 94–98%.

Intravenous (IV) adrenaline in specialist settings

Intravenous adrenaline should be used only by those experienced in the use and titration of vasopressors in their normal clinical practice (based on expert opinion and exiting guidelines) Patients who are given IV adrenaline must be monitored – continuous ECG and pulse oximetry and frequent non-invasive blood pressure measurements as a minimum. Titrate IV adrenaline using a 20–50 μg bolus according to response. If repeated adrenaline doses are needed, start an IV adrenaline infusion.

Other drugs to support the circulation

Several guidelines based on expert opinion recommend glucagon 1–2 mg IV is considered for anaphylaxis refractory to adrenaline in patients who are taking beta-blockers, in addition based on expert opinion when anaphylaxis is refractory other vasopressors can be considered as a bolus dose or infusion including vasopressin, noradrenaline, metaraminol, phenylephrine. (Australian guideline website - https://www.allergy.org.au/images/ASCIA_HP_Guidelines_Acute_Management_Anaphylaxis_2020.pdf – accessed 10 August 2020).

Role of steroids and antihistamines in the immediate management of anaphylaxis

There is no evidence that supports the routine use of either steroids or antihistamines in the initial resuscitation of a patient with anaphylaxis. They do not appear to alter the progress of anaphylaxis or prevent biphasic reactions. Steroids should be considered if there are ongoing asthma-like symptoms or in the setting of refractory shock in accordance with guidelines for asthma and shock states.

Considerations for cardiac arrest in anaphylaxis

There are no specific studies of advanced life support for anaphylaxis. Based on expert opinion follow standard ALS guidelines for cardiac arrest care including use of IV adrenaline and correction of potentially reversible causes (fluids, oxygen) (see ALS Guidelines). Areas of controversy is the effectiveness of chest compressions in patients with vasodilatory cardiac arrest and when should chest compressions start in closely monitored patients. In a case series of peri-operative cardiac arrest caused by anaphylaxis 31 of 40 patients (77.5%) survived with ALS interventions, and 67% of survivors required an adrenaline or vasopressor infusion after ROSC. The cardiac arrest rhythm was PEA in 34 (85%), VF in 4 (10%) and asystole in 2 (5%).

Role of extracorporeal life support and extracorporeal CPR in anaphylaxis

The ILCOR ALS Task Force suggests that ECPR may be considered as a rescue therapy for selected patients with cardiac arrest when conventional CPR is failing in settings in which it can be implemented (weak recommendation, very low-certainty evidence). Expert
Hypoxia

The correction of hypoxia in cardiac arrest due to sepsis may require high flow oxygenation, intubation and mechanical ventilation. Correcting hypoxia and hypotension will optimise oxygen delivery to tissues and vital organs.

Hypovolaemia

Sepsis-induced tissue hypoperfusion or septic shock requires prompt and effective fluid resuscitation. Initial fluid resuscitation should begin immediately following the recognition of a patient with sepsis and/or hypotension and elevated lactate, and completed within 3 h of recognition. A minimum of 30 ml kg⁻¹ of IV crystalloid fluid is recommended based on data from observational studies. Based on the lack of evidence to support the use of colloid compared with crystalloid solutions, the guidelines make a strong recommendation for the use of crystalloid solutions in the initial resuscitation of patients with sepsis and septic shock.

The goal of resuscitation is to restore adequate perfusion pressure to the vital organs. If patient remains hypotensive after initial fluid resuscitation, then vasopressors should be started within the first hour to achieve a mean arterial pressure (MAP) of ≥65 mmHg.

Post resuscitation care

Sources of infection should be identified and treated accordingly. Serum lactate is a surrogate for tissue perfusion and can be used to guide resuscitation. Careful clinical assessment is required beyond the initial resuscitation stages to assess fluid responsiveness and avoid potentially harmful sustained positive fluid balance.

Early initiation of treatment is required to prevent organ dysfunction and cardiac arrest. Follow standard ALS guidelines for cardiac arrest in a patient with sepsis or suspected sepsis. Correct hypoxia and treat hypovolaemia and look for other potentially reversible causes using the 4Hs and 4Ts approach. In post resuscitation care, avoid sustained positive fluid balance. Serum lactate may be useful in guiding therapy.

Hypo-/hyperkalaemia and other electrolyte disorders

Electrolyte abnormalities are recognised causes of arrhythmias and cardiac arrest. Potassium disorders, hyperkalaemia and hypokalaemia are the most common electrolyte disturbances associated with life-threatening arrhythmias, whilst calcium and magnesium disorders occur less commonly. The primary focus in this section is the recognition, treatment and prevention of hyperkalaemia.

This section is based on the UK Renal Association Hyperkalaemia guideline 2020 which used the GRADE approach for quality of evidence. There remains sparse evidence for the drug treatments for hyperkalaemia (i.e. intravenous calcium and insulin-glucose) in cardiac arrest. A review did not identify any other relevant, high quality guidelines on the management of hyperkalaemic cardiac arrest or the initiation of dialysis during CPR. A scoping review was performed using keywords ‘hyperkalaemia’, ‘treatment’, ‘ECG’, and ‘Cardiac arrest’ in PubMed (1960–2020), Ovid Medline (1946–2020), EMBASE (1974–2020) and The Cochrane Library (1995–2020). Websites searches included National Institute for Health and Care Excellence (NICE), Scottish Medicines Consortium (SMC), Healthcare Improvement Scotland, Medicines and Healthcare products Regulatory Agency (MHRA) and European Medicines Agency (EMA).

Hyperkalaemia

Hyperkalaemia occurs in 1–10% of hospitalised patients, most often in patients with pre-existing kidney disease or in the context of an
acutely in poor cardiac function, which may result in a decline in cardiac output and hypotension. This can lead to shock and death if not treated promptly. The diagnosis of hyperkalaemia should be confirmed using point-of-care testing.

Definition

There is no universal definition for hyperkalaemia as a serum potassium (K⁺) concentration greater than 5.5 mmol/l, although in clinical practice, hyperkalaemia is a continuum. The severity of hyperkalaemia guides response to treatment. Hyperkalaemia may be categorised as 'mild' (K⁺ 5.5–6.9 mmol/l), 'moderate' (K⁺ 6.0–6.4 mmol/l) or 'severe' (K⁺ ≥6.5 mmol/l).

Causes

The main causes of hyperkalaemia are:

- Renal failure (i.e. acute kidney injury (AKI), chronic kidney disease (CKD) or end-stage renal disease (ESRD)).
- Drugs (e.g. angiotensin converting enzyme inhibitors (ACE-I), angiotensin II receptor antagonists (ARB), mineralocorticoid receptor antagonists (MRA), non-steroidal anti-inflammatory drugs, non-selective beta-blockers, trimethoprim, suxamethonium).
- Endocrine disorders (e.g. diabetic ketoacidosis, Addison’s disease).
- Tissue breakdown (e.g. rhabdomyolysis, tumour lysis syndrome, haemolysis).
- Diet (high potassium intake in patients with advanced CKD).
- Spurious – consider pseudo-hyperkalaemia in the presence of normal renal function, normal ECG and/or history of haematological disorder. Pseudo-hyperkalaemia is detected when the serum (clotted blood) K⁺ level exceeds that of the plasma (non-clotted blood) by more than 0.4 mmol/l on simultaneous samples. Difficult venepuncture, prolonged transit time and poor storage conditions can contribute to spurious K⁺ levels.

The risk of hyperkalaemia increases in the presence of multiple risk factors (e.g. the concomitant use of ACE-I and/or MRA in the presence of CKD).

Diagnosis

Consider hyperkalaemia in all patients with an arrhythmia or cardiac arrest, especially in the patient groups at risk (e.g. renal failure, heart failure, diabetes mellitus, rhabdomyolysis).

Symptoms may be absent or over-shadowed by the primary illness causing hyperkalaemia, but the presence of limb weakness, fascicul paralysis or paraesthesia are indicators of severe hyperkalaemia. Confirm the presence of hyperkalaemia using point-of-care testing (i.e. blood gas analyser) if available. Formal laboratory samples will take some time, therefore clinical decisions can be made on the results using point-of-care testing. The ECG is used to assess cardiac toxicity and risk of arrhythmias in patients with known or suspected hyperkalaemia and may be the most readily available diagnostic tool. When the diagnosis of hyperkalaemia can be established based on the ECG, treatment can be initiated even before serum biochemistry is available.

The ECG signs of hyperkalaemia are usually progressive and include:

- First degree heart block (prolonged PR interval >0.2 s).
- Flattened or absent P waves.
- Tall, peaked (tented) T waves (i.e. T wave larger than R wave in more than 1 lead).
- ST-segment depression.
- Widened QRS (>0.12 s).
- VT.
- Bradycardia.
- Cardiac arrest (PEA, VF/pVT, asystole).

The incidence of ECG changes appears to correlate with severity of hyperkalaemia. In patients with severe hyperkalaemia (K⁺ ≥6.5 mmol/l), arrhythmias or cardiac arrest have been shown to occur in 15% of patients within 6 h of the presenting ECG prior to initiation of treatment. However, it is also recognised that the ECG may be normal even in the presence of severe hyperkalaemia and the first ECG sign of hyperkalaemia may be an arrhythmia or cardiac arrest.

Treatment

There are five key steps in the treatment of hyperkalaemia:

1. Protect the heart;
2. Shift potassium into cells;
3. Remove potassium from the body;
4. Monitor serum potassium and glucose levels;
5. Prevent recurrence of hyperkalaemia.

Follow a systematic approach as outlined in the hyperkalaemia treatment algorithm (Fig. 4). Assess the patient using the ABCDE approach and check the severity of hyperkalaemia with urgent bloods specialist or critical care referral. The treatment of mild hyperkalaemia is out with the scope of this guideline.

Intravenous calcium salts (calcium chloride or gluconate) are indicated in severe hyperkalaemia in the presence of ECG changes. Although this therapy lacks a strong evidence base, it is widely accepted that it prevents arrhythmias and cardiac arrest. The main risk of this treatment is tissue necrosis secondary to extravasation, therefore ensure secure vascular access prior to administration.

Insulin and glucose is the most effective and reliable therapy for lowering serum K⁺ by shifting K⁺ into cells. However, there is growing evidence to highlight the risk of hypoglycaemia with an incidence rate of up to 28%. Studies comparing low dose (5 units) to conventional dose (10 units) insulin reported hypoglycaemia in 8.7–19.7% of patients. Two studies have also reported an apparent dose-dependent effect with 10 units insulin showing greater efficacy than 5 units insulin. The risk of hypoglycaemia is reduced by the administration of 50 g glucose. Continuous delivery of glucose has also been shown to reduce hypoglycaemic events, therefore this strategy has been applied to the patient group most at risk. A low pre-treatment blood glucose level appears to be a consistent risk factor for development of hypoglycaemia. Treat moderate or severe hyperkalaemia with 10 units insulin and 25 g glucose followed by a continuous infusion of 10% glucose over 5 h (25 g glucose) in patients with a baseline glucose <7.0 mmol/l to reduce the risk of hypoglycaemia.

Salbutamol is a beta-2 adrenoceptor agonist and promotes the intracellular shift of K⁺. Its effect is dose-dependent, but a lower dose is recommended in patients with heart disease. Salbutamol may be ineffective in some patients including those receiving non-selective beta-blockers and in up to 40% of patients with ESRD,
therefore it should not be used as monotherapy. The combination of salbutamol with insulin-glucose is more effective than either treatment alone.140–142

The novel potassium binders SZC143 and the cation exchange resin Patiromer144 are approved by NICE in the UK for the treatment of life-threatening hyperkalaemia (K+ >6.5 mmol/l) (enteral application). SZC works within 1 h145 and lowers serum K+ by 1.1 mmol/l within 48 h.146 Efficacy increases with severity of hyperkalaemia. In patients with a serum K+ >6.0 mmol/l, SZC lowers serum K+ by 1.5 mmol/l within 48 h.144 SZC normalises serum K+ in 66% of patients within 24 h, 75% within 48 h and in 78% of patients within 72 h.147 Patiromer works more slowly with an onset of action within 4–7 h and lowers serum K+ by 0.36 mmol/l within 72 h.148 Pilot studies for both drugs in the acute setting have been inconclusive.149,150 Both drugs may be used in patients with persistent moderate hyperkalaemia. However, NICE has recommended restricted use for patients with CKD 3b-5 (not on dialysis) or heart failure who are being treated with a sub-optimal dose of an ACE-I or ARB. Resins, e.g. calcium resonium, may be considered for patients who do not meet these criteria. Follow local guidelines for use of potassium binders.

Serial monitoring of the serum K+ and blood glucose are essential to assess efficacy of treatment and to detect hypoglycaemia. Insulin-glucose and salbutamol are effective for 4–6 h, thereafter, be alert for a rebound of hyperkalaemia.

Indications for dialysis

Dialysis is the most definitive treatment for hyperkalaemia. The main indications for dialysis in patients with hyperkalaemia are:

- Severe life-threatening hyperkalaemia with or without ECG changes or arrhythmia.
- Hyperkalaemia resistant to medical treatment.
- End-stage renal disease.
- Oliguric acute kidney injury (urine output <400 ml/day).
- Marked tissue breakdown (e.g. rhabdomyolysis).

Several dialysis modalities have been used safely and effectively in cardiac arrest, but requires expert help and equipment.151–155 The procedure for dialysis initiation during cardiac arrest is outlined in the Renal Association (UK) Hyperkalaemia Guideline (2020).156 Following dialysis, rebound hyperkalaemia may occur.

Hypokalaemia

Hypokalaemia is a common electrolyte disorder in clinical practice. It is associated with a higher in-hospital mortality and an increased risk of ventricular arrhythmias.156–158 The risk of adverse events is increased in patients with pre-existing heart disease and in those treated with digoxin.158–160

Definition

Hypokalaemia is defined as a serum K+ <3.5 mmol/l. Clinical manifestations and treatment is guided by severity: mild (K+ 3.0–3.4 mmol/l), moderate (K+ 2.5–2.9 mmol/l) or severe (K+ <2.5 mmol/l or symptomatic).160

Causes

The main causes of hypokalaemia are:

- Gastrointestinal loss (e.g. diarrhoea, laxative abuse, villous adenoma of colon);
- Drugs (e.g. diuretics, laxatives, steroids);
- Therapies for hyperkalaemia (insulin/glucose, salbutamol);
- Renal losses (e.g. renal tubular disorders, diabetes insipidus);
- Dialysis losses (e.g. peritoneal dialysis, post haemodialysis therapy);
- Magnesium depletion;
- Metabolic alkalosis;
- Endocrine disorders (e.g. Cushing’s syndrome, primary hypoaldosteronism);
- Poor dietary intake.

Recognition

Consider hypokalaemia for all patients with an arrhythmia or cardiac arrest. As serum K+ level falls, the nerves and muscles are predominantly affected causing fatigue, weakness, leg cramps and constipation. Mild hypokalaemia is usually asymptomatic, however, in severe cases (K+ <2.5 mmol/l), rhabdomyolysis, ascending paralysis, respiratory difficulties and arrhythmias may occur.160

ECG features of hypokalaemia:

- U waves;
- T wave flattening;
- Prolonged PR interval;
- ST segment changes (ST depression, T-wave inversion);
- Arrhythmias (increased risk on patients taking digoxin);
- Cardiac arrest (PEA, VF/pVT, asystole).

Treatment

There are 4 key steps in treating hypokalaemia:

1. Restore potassium level (rate and route of replacement guided by clinical urgency).
2. Check for any potential exacerbating factors (e.g. digoxin toxicity, hypomagnesaemia).
3. Monitor serum K+ (adjust replacement as needed depending on level).
4. Prevent recurrence (assess and remove cause).

Treatment is guided by the severity of hypokalaemia and presence of symptoms and/or ECG abnormalities. Slow replacement of potassium is preferable, but in an emergency, more rapid IV replacement is required.

- The standard rate of infusion of potassium is 10 mmol/h. The maximum rate is 20 mmol/h, but more rapid infusion (e.g. 2 mmol/min for 10 min, followed by 10 mmol over 5–10 min) is indicated for unstable arrhythmias when cardiac arrest is imminent.
- Continuous ECG monitoring is essential, ideally in a high dependency area.
- Monitor potassium level closely and titrate rate of replacement according to the level.

Magnesium is important for potassium uptake and for the maintenance of intracellular potassium concentration, particularly in the myocardium. Magnesium deficiency is common in patients with hypokalaemia. Repletion of magnesium will facilitate more rapid correction of hypokalaemia.161 If hypokalaemia occurs concurrently with hypomagnesaemia, give 4 ml magnesium sulphate 50% (8 mmol) diluted in 10 ml NaCl 0.9% over 20 min, followed by potassium replacement (40 mmol KCl in 1000 ml 0.9% NaCl at a rate guided by urgency for correction as above). Follow with further magnesium replacement.160

Calcium and magnesium disorders

The recognition and treatment of calcium and magnesium disorders is summarised in Table 2.
Accidental hypothermia is the involuntary drop in core temperature <35 °C. Severe hypothermia may reduce vital functions until the occurrence of cardiac arrest. In hypothermic patients with spontaneous circulation insolation, hospital triage followed by transfer and rewarming are key interventions. In hypothermic patients with cardiac arrest, continuous CPR and ECPR rewarming may result in good neurological outcome even with prolonged no-flow or low-flow (i.e. CPR) time, provided that hypothermia ensued before cardiac arrest. These guidelines help to improve prehospital triage, transport and treatment as well as in-hospital management of hypothermic patients.

A scoping review was performed using the PubMed search engine on February 22nd 2020 using the keywords “avalanche” AND “rescue” (n = 100). Four systematic reviews were identified. Relevant articles from the systematic reviews were included and references lists crosschecked for further articles.

Accidental hypothermia

Prevention from cardiac arrest

Accidental hypothermia is the involuntary drop in the core temperature <35 °C. Primary hypothermia is induced by exposure to cold, while secondary hypothermia is induced by illness and other external causes. Primary hypothermia is prominent in outdoor (athletes and lost persons) and urban environments (homeless and intoxicated persons), while secondary hypothermia is rapidly increasing among old and multimorbid persons in the indoor environment. Assess temperature with a low reading thermometer (Fig. 5).:• tympanically in spontaneously breathing patients,
• oesophageal in patients who are endotracheal intubated or instrumented with a 2nd generation supraglottic airway,
• If the ear is not well cleaned from snow and cold water or not tympanically in spontaneously breathing patients,
Management of cardiac arrest

The lowest temperature from which successful resuscitation and rewarming has been achieved is currently 11.8 °C\(^{176}\) or accidental hypothermia and 4.2 °C for induced hypothermia.\(^{177}\) A recent systematic review reported only five patients (28–75 years of age) who had arrested at a core temperature >28 °C, suggesting that cardiac arrest due to primary hypothermia at >28 °C is possible but unlikely.\(^{165}\) Some may still have minimal vital signs at a core temperature <24 °C.\(^{175}\) This does not preclude resuscitation attempts at even lower temperatures if clinical judgment suggests the possibility of successful resuscitation.

A deeply hypothermic person may appear dead but still survive with resuscitation. Check for signs of life for one minute – not only by clinical examination but also by using ECG, ETCO\(_2\), and ultrasound.\(^{9,84}\) In hypothermic cardiac arrest information should be collected to estimate the survival probability from hypothermic cardiac arrest with HOPE, ICE or the traditional potassium triage:\(^{162,163,178,179}\)

- Core temperature,
- Mechanism of hypothermia induction,
- Duration of CPR,
- Sex,
- Witnessed/unwitnessed cardiac arrest,
- First cardiac rhythm,
- Trauma (to decide whether to start ECLS rewarming with heparin),
- Serum potassium (in hospital).

This information is crucial for prognostication and to decide whether to rewarm the patient with ECLS. For hypothermic cardiac arrest HOPE (Hypothermia Outcome Prediction after ECLS rewarming for hypothermic arrested patients) has been best validated. The website to calculate HOPE can be accessed via: https://www.hypothermiasecore.org.

Hypothermic patients in witnessed and unwitnessed cardiac arrest have good chances of neurological recovery if hypothermia developed before hypoxia and cardiac arrest and if the chain of survival is functioning well.\(^{6,164,180–183}\) Hypothermia diminishes the oxygen demand of the body (6–7% per 1 °C cooling) and thereby protects the most oxygen dependent organs of the body – brain and heart – against hypoxic damage.\(^{194}\) A recent systematic review on witnessed hypothermic cardiac arrest patients (n = 214) reported a survival to hospital-discharge rate of 73%, 89% had a favourable outcome. Another systematic review on hypothermic patients with unwitnessed cardiac arrest (n = 221) reported a survival rate of 27%, 83% had a neurologically intact outcome. Of note, the first rhythm was asystole in 48% of survivors.\(^{165}\) Hypothermic cardiac arrest patients should receive continuous CPR until circulation has been re-established.

Chest compression and ventilation rate should follow the standard ALS algorithm as for normothermic patients. Hypothermic cardiac arrest is often refractory to defibrillation and adrenaline. Defibrillation attempts have been successful in patients with a core temperature >24 °C, however, ROSC tends to be unstable with lower temperature.\(^{185}\)

The hypothermic heart may be unresponsive to cardioactive drugs, attempted electrical pacing and defibrillation. Drug metabolism is slowed, leading to potentially toxic plasma concentrations of any drug given.\(^{8}\) The evidence for the efficacy of drugs in severe hypothermia is limited and based mainly on animal studies. For instance, in severe hypothermic cardiac arrest, the efficacy of amiodarone is reduced.\(^{196}\) Adrenaline may be effective in increasing coronary perfusion pressure, but not survival.\(^{187,188}\) Vasopressors may also increase the chances of successful defibrillation, but with a core temperature <30 °C, sinus rhythm often degrades back into VF. Given that defibrillation and adrenaline may induce myocardial injury, it is reasonable to withhold adrenaline, other CPR drugs and shocks until the patient has been warmed to a core temperature >30 °C. Once 30 °C has been reached, the intervals between drug doses should be doubled when compared to normothermia (i.e. adrenaline every 6–10 min). As normothermia (>35 °C) is approached, standard drug protocols become effective again.\(^{5,6}\)

Arrested hypothermic patients should, where possible, be directly transferred to an ECLS centre for rewarming. In primary hypothermia an unwitnessed cardiac arrest with asystole as first rhythm is not a contraindication to ECLS rewarming.\(^{185}\) In hypothermic cardiac arrest rewarming should be performed with ECLS, preferably with ECMO rather than CPB.\(^{5,185,195}\) If ECLS is not available within 6 h, non-ECLS rewarming may be used.\(^{183,191,192}\) If prolonged transport is required or the terrain is difficult, mechanical CPR is suggested. In hypothermic arrested patients with a body temperature <28 °C delayed CPR may be used when CPR is too dangerous and intermittent CPR can be used when continuous CPR is not possible (Fig. 6).\(^{8}\)

In-hospital prognostication of successful rewarming should be based on the HOPE or ICE score (Table 4), the traditional in-hospital serum potassium prognostication is less reliable.\(^{162,163,178}\)

A post-resuscitation care bundle is recommended following successful resuscitation. Emergency medical services (EMS) and hospitals should install structured protocols to improve prehospital triage, transport and treatment as well as in-hospital management of hypothermic patients.

Avalanche rescue

Most avalanche victims die from asphyxia.\(^{193,194}\) Avalanche victims in an unwitnessed cardiac arrest have a poor chance of survival.\(^{193–195}\)

The chance of a good outcome are improved if there is a ROSC in the

Table 3 – Staging of accidental hypothermia.\(^{6}\)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Clinical findings</th>
<th>Core temperature (°C) (if available)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothermia I (mild)</td>
<td>Conscious, shivering(^a)</td>
<td>35–32 °C</td>
</tr>
<tr>
<td>Hypothermia II (moderate)</td>
<td>Impaired consciousness(^b); may or may not be shivering</td>
<td><32–28 °C</td>
</tr>
<tr>
<td>Hypothermia III (severe)</td>
<td>Unconscious(^b); vital signs present</td>
<td><28 °C</td>
</tr>
<tr>
<td>Hypothermia IV (severe)</td>
<td>Apparent death; Vital signs absent</td>
<td>Variable(^b)</td>
</tr>
</tbody>
</table>

\(^{a}\) Shivering and consciousness may be impaired by comorbid illness (i.e. trauma, CNS pathology, toxic ingestion, etc.) or drugs (i.e. sedatives, muscle relaxants, narcotics etc.) independent of core temperature.

\(^{b}\) The risk of cardiac arrest increases <32 °C, older and sicker are at higher risk, alternative causes should be considered. Some still have vital signs <24 °C.\(^{175}\)
first minutes of CPR. In arrested patients five ventilations should initially be provided because hypoxia is the most likely cause of the cardiac arrest. Avalanche victims with OHCA and duration of burial <60 min should be managed like normothermic patients (Fig. 7). Standard ALS should be provided for at least 20 min. Avalanche victims with duration of burial >60 min without evidence of an un-survivable injury undertake full resuscitative measures, including ECLS rewarming. CPR should be considered as futile in cardiac arrest with a burial time >60 min and evidence of an obstructed airway. In-hospital prognostication of successful rewarming should be based on the HOPE score. The traditional triage with based on serum potassium and the core temperature (cut-off 7 mmol/l and 30 °C, respectively) may be less reliable. A post-resuscitation care bundle is recommended following successful resuscitation.

Hyperthermia and malignant hyperthermia

Hyperthermia is a condition when the temperature of the body increases above normothermia (36.5–37.5 °C) because of failed thermoregulation. Heat stroke is an emerging health concern due to a soaring environmental temperature caused by increasing greenhouse gas emissions. Heatwaves kill more people than any other extreme weather condition. In 2003, an extreme heatwave killed 70,000 people in Europe. The lack of ability to sweat is the main risk factor for hyperthermia. The traditional triage with based on serum potassium and the core temperature (cut-off 7 mmol/l and 30 °C, respectively) may be less reliable. A post-resuscitation care bundle is recommended following successful resuscitation.

Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Hyperthermia and malignant hyperthermia

Hyperthermia is a condition when the temperature of the body increases above normothermia (36.5–37.5 °C) because of failed thermoregulation. Heat stroke is an emerging health concern due to a soaring environmental temperature caused by increasing greenhouse gas emissions. Heatwaves kill more people than any other extreme weather condition. In 2003, an extreme heatwave killed 70,000 people in Europe. The lack of ability to sweat is the main risk factor for hyperthermia. The traditional triage with based on serum potassium and the core temperature (cut-off 7 mmol/l and 30 °C, respectively) may be less reliable. A post-resuscitation care bundle is recommended following successful resuscitation.

Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Malignant hyperthermia (MH) is a rare pharmacogenetic disorder of skeletal muscle calcium homeostasis characterised by muscle contracture and life-threatening hypermetabolic crisis following exposure of genetically predisposed individuals to halogenated anaesthetics and succinylcholine. Hyperthermia is a continuum of heat-related conditions, ranging from heat stress progressing to heat exhaustion, finally to exertional and non-exertional (caused by environmental heat) heat stroke and potentially progressing to multiple organ dysfunction and cardiac arrest (>40 °C).

Table 4 – Hypothermia Outcome Prediction after ECLS (HOPE) for hypothermic cardiac arrest patients, description of parameters affecting HOPE with regard to estimation of the survival probability. CPR denotes cardiopulmonary resuscitation, ECLS extracorporeal life support.

<table>
<thead>
<tr>
<th>Definition of parameters and when to record them</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
</tr>
<tr>
<td>Sex</td>
</tr>
<tr>
<td>Core temperature (°C/°F)</td>
</tr>
<tr>
<td>Serum potassium (mmol/l)</td>
</tr>
<tr>
<td>Presence of asphyxia</td>
</tr>
<tr>
<td>Duration of CPR (min)</td>
</tr>
</tbody>
</table>

- On site or in hospital
- First measurement at hospital admission
- Asphyxia (head fully covered by water or snow) AND in cardiac arrest at extrication.
- No asphyxia: immersion, outdoor or indoor exposure.
- Data recorded on site
- From initiation of manual CPR until expected start of ECLS. Data recorded prehospital and in-hospital once establishment of ECLS can be expected.

This section is based on an ILCOR systematic review, two recent reviews and an additional scoping review (February 22nd 2020), 52,199,202,203

Hyperthermia

Hyperthermia occurs when the body’s ability to thermoregulate fails and core temperature exceeds values normally maintained by homeostatic mechanisms. Hyperthermia may be primarily induced by environmental conditions, or secondary due to endogenous heat production. Environment-related hyperthermia occurs where heat, usually in the form of radiant energy, is absorbed by the body at a rate faster than can be lost by thermoregulatory mechanisms. Hyperthermia is a continuum of heat-related conditions, starting with heat syncope, progressing to heat exhaustion, then to heat stroke with a compensable and a non-compensable state and finally to multiple organ dysfunction and cardiac arrest. Importantly, the heat stroke-triggered inflammatory response may resemble the systemic inflammatory response syndrome (SIRS) and be misdiagnosed and a critical delay may result in providing the appropriate treatment. A rectal or oesophageal temperature probe should be available to measure core temperature and to guide treatment (Fig. 8).

Heat syncope is a mild form of hyperthermia. Treatment includes removing patients to a cool environment, passive cooling and administration of oral isotonic or hypertonic fluids.

Heat exhaustion is caused by mild to moderate hyperthermia due to exposure to high environmental heat or excessive exercise. Symptoms include intense thirst, weakness, discomfort, anxiety, dizziness, syncope, core temperature may be normal or >37°C. Treatment includes removing patients to a cool environment, lying them flat and administering IV isotonic or hypertonic fluids, consider additional electrolyte replacement therapy with isotonic fluids. Oral rehydration may not be effective in rapidly replacing electrolytes but may be a more practical treatment. Replacement of 1–2 l crystalloids at 500 ml/h is often adequate. Simple external cooling measures are usually not required but may involve conductive (cold floor, ice sheets; commercial ice packs to hand, feet and cheek), convective (cold water immersion, cold shower) and evaporative measures (spraying cold water, fanning the undressed).

Heat stroke is primarily a clinical diagnosis based on the triad of severe hyperthermia (core temperature >40°C), neurological symptoms and recent passive environmental exposure (classic or passive heat stroke) or excessive exercise (exertional heat stroke or exertional hyperthermia). Symptoms include central nervous...
system dysregulation (e.g. altered mental state, seizure, coma), tachycardia, tachypnoea and arterial hypotension. Mortality is approximately 10% and when combined with hypotension it approaches 33%. The outcome worsens if the body temperature is sustained at $>40.5\ °C$.

It is essential to rapidly cool the patient to $<39\ °C$, preferably <38.5 – $38.0\ °C$ as quickly as possible. Treatment involves removing patients to a cool environment, lying them flat. Cold-water immersion (from neck down) or full body conductive cooling should be used, cooling rates of 0.2–$0.35\ \text{C/min}$ can be achieved. Cold water immersion should be continued until the symptoms have resolved or for a reasonable amount of time, e.g. 15 min, because benefit outweighs risk (weak recommendation, very low certainty evidence). Alternatively, a combination of simple cooling techniques could be used including conductive, convective and evaporative measures, although no comparative studies exist to guide the best option. One systematic review concluded that water immersion (1 – $17\ °C$ water) lowers body temperature more effective compared to passive cooling. Misting and fanning cooling techniques are marginally faster than passive cooling and cold showers ($20.8\ °C$) cool faster than passive cooling. Isotonic or hypertonic fluids should be administered (with blood sodium $>130\ \text{mEq/l}$ up to $3 \times 100\ \text{ml} 3\%\ \text{NaCl at 10 min intervals}$). If mental state is abnormal $3\%\ \text{NaCl should be administered IV}$, if mental state is normal it can be administered orally. Additional electrolyte replacement with isotonic fluids should be considered and substantial amounts of fluids may be required. For exertional heatstroke, a cooling rate faster than $0.10\ \text{C/min}$ is safe and desirable. Follow the ABCDE approach in any patient with deteriorating vital signs. Critically ill patients will require aggressive and extended treatment in an intensive care unit. There may be a requirement for advanced cooling techniques including external or internal devices used for targeted temperature management. There are no specific drugs lowering core temperature.

Malignant hyperthermia

Most MH associated variants are caused by mutation of the RYR1 gene. RYR1 encodes the skeletal muscle ryanodine receptor protein, that regulates the movement of calcium from the sarcoplasmic reticulum into the cytoplasm of the muscle cell. Drugs such as 3,4-methylenedioxyxymethamphetamine (MDMA, ‘ecstasy’) and amphetamines may also cause a condition similar to MH and the use of dantrolene may be helpful. If cardiac arrest occurs, follow the universal ALS algorithm and continue to cool the patient. Attempt defibrillation using standard energy levels. Apply the same cooling techniques as for post-resuscitation care targeted temperature management.

Give dantrolene (2.5 mg/kg initially, $10\ \text{mg/kg}$ as required). Ryanodex is a lyophilized nanosuspension of dantrolene sodium with substantially improved pharmacological properties (fewer vials 1:12.5, administration time is 1 instead of 20 min). The introduction in European countries is pending.

It is essential to contact an expert MH centre for ongoing advice once the patient has been stabilized. Due the increased metabolic rate, outcome is poor compared with normothermic cardiac arrest.

Unfavourable neurological outcome increases by 2.26 odds ratio for $1\ °C$ of body temperature $>37\ °C$.

Thrombosis

This section refers to pulmonary and to coronary thrombosis as potential reversible causes of cardiac arrest.

Pulmonary embolism

Cardiac arrest from acute pulmonary embolism is the most serious clinical presentation of venous thromboembolism, in most cases originating from a DVT. The reported incidence of cardiac arrest caused by pulmonary embolism is 2 – 7% of all OHCA, and 5 – 6% of all IHCA, but this is likely to be an underestimation. Overall survival is low. Specific treatments for cardiac arrest resulting from pulmonary embolism include administration of fibrinolytics, surgical embolectomy and percutaneous mechanical thrombectomy.

The updated 2020 ILCOR systematic review explored the influence of specific treatments (e.g. fibrinolytics, or any other) yielding favourable outcomes. The 2019 ILCOR summary statement reviewed the use of ECPR for cardiac arrest in adults. Additional evidence was identified from the updated ESC guideline on pulmonary embolism, pertaining articles were included and references lists crosschecked for further articles.

Diagnosis

Diagnosis of acute pulmonary embolism during cardiac arrest is difficult. One study has reported correct recognition of the underlying causes in up to 85% of all in-hospital resuscitation attempts, but accurate prehospital diagnosis of acute pulmonary embolism is particularly challenging. The 2019 European Society of Cardiology Guidelines on the diagnosis and management of acute pulmonary embolism define ‘confirmed pulmonary embolism’ as a probability of pulmonary embolism high enough to indicate the need for specific treatment. Clinical history and assessment, capnography and echocardiography (if available) can all assist in the diagnosis of acute pulmonary embolism during CPR with varying degrees of specificity and sensitivity. Cardiac arrest commonly presents as PEA. Low ETCO$_2$ readings (about 1.7 kPa/13 mmHg) while performing high quality chest compressions may support a diagnosis of pulmonary embolism, although it is a non-specific sign.

Common symptoms preceding cardiac arrest are sudden onset of dyspnoea, pleuritic or substernal chest pain, cough, haemoptysis, syncope and signs of DVT in particular (unilateral lower extremity swelling) Information about past medical history, predisposing factors, and medication that may support diagnosis of pulmonary embolism should be obtained, although none of these are specific. In as many as 30% of the patients with pulmonary embolism, no risk factors are apparent.

If a 12-lead ECG can be obtained before onset of cardiac arrest, changes indicative of right ventricular strain may be found:

- Inversion of T waves in leads V1 – V4,
- QR pattern in V1,
- S1 Q3 T3 pattern (i.e. a prominent S wave in lead I, a Q wave and inverted T wave in lead III),
- Incomplete or complete right bundle-branch block.

Acute PE can cause right ventricle (RV) pressure overload and dysfunction and these signs can be seen on echocardiography. Unfortunately, there is no individual echocardiographic parameter that provides fast and reliable information on RV size or function. Echocardiographic criteria for the diagnosis of PE differ between studies, the negative predictive value is only 40 – 50%. Signs of right ventricular overload or dysfunction may also be caused by other cardiac or pulmonary disease.
Prevention of cardiac arrest

Airway

Low cardiac output results in desaturation of the mixed venous blood. Although no studies were found which examined the role of oxygen versus any other gas, the writing group considered hypoxaemia as confounding risk factor for cardiac arrest and recommends administration of high-flow oxygen until goal-directed therapy could be established.

Breathing

Hypoxaemia and hypocapnia are frequently encountered in patients with PE, but they are of moderate severity in most cases. PE should be considered in all patients with sudden onset of progressive dyspnoea, especially in patients without pre-existing pulmonary disease. Other reversible causes of cardiovascular deterioration and dyspnoea have to be excluded, e.g. (tension) pneumothorax and anaphylaxis (anaphylactic shock). Hypoxaemia is usually reversed with administration of oxygen.

When mechanical ventilation is required, care should be taken to limit its adverse haemodynamic effects. In particular, the positive intrathoracic pressure induced by mechanical ventilation may reduce venous return and worsen RV failure.

Circulation

The clinical classification of the severity of an episode of acute PE is based on the estimated in-hospital or 30-day mortality. High-risk PE is suspected or confirmed in the presence of shock or persistent arterial hypotension. Suspected high-risk PE is an immediately life-threatening situation.

Acute right ventricle (RV) failure is the leading cause of death in patients with high-risk PE. Aggressive volume expansion is of no benefit and may even worsen RV function by causing mechanical overstretch. On the other hand, modest (<500 ml) fluid challenge may help to increase cardiac index in patients with PE, low cardiac index, and normal BP. Use of vasopressors and/or inotropes is frequently needed.

Reperfusion

Parenteral anticoagulation should be initiated whilst awaiting the results of diagnostic tests. Intravenous unfractionated heparin (UFH) is recommended for patients with shock and hypotension, and in whom primary reperfusion is considered. Thrombolytic treatment of acute PE restores pulmonary perfusion more rapidly than anticoagulation with UFH alone. A review of RCTs indicated that thrombolysis may be associated with a reduction in mortality or recurrent PE in high-risk patients who present with haemodynamic instability. Surgical embolectomy or percutaneous catheter-directed treatment are recommended as alternative to rescue thrombolytic therapy in rapidly deteriorating patients if expertise and resources are available on site. Treatment decisions should be made by an interdisciplinary team involving a thoracic surgeon or interventional cardiologist.

Modifications to ALS for PE

Thrombolysis

When PE is the suspected cause of cardiac arrest thrombolytic drugs should be administered (weak recommendation, very low certainty of evidence). One study showed benefit associated with the use of thrombolytic drugs compared with no thrombolytic drugs in patients with PE. One study showed benefit with thrombolysis for survival at 24 h whereas another study showed no difference with versus without thrombolysis. Three observational studies showed no benefit for survival to discharge. For survival with favourable neurologic outcome at 30 days one RCT compared thrombolytics with placebo in 37 patients with confirmed PE, finding no difference between groups, another observational study with/without thrombolysis found no difference. There is insufficient evidence to recommend any optimal drug and dosing strategy for thrombolysis during CPR. When thrombolytic drugs have been administered, consider continuing CPR attempts for at least 60–90 min before termination of resuscitation attempts.

Surgical embolectomy

When PE is the known cause of cardiac arrest the use of fibrinolytic drugs or surgical embolectomy or percutaneous mechanical thrombectomy is recommended (weak recommendation, very low certainty of evidence). The method is reported in 2 case series without control group in cardiac arrest patients.

Percutaneous mechanical thrombectomy

This method is reported in 1 case series in cardiac arrest patients.

Extracorporeal CPR

ECPR should be considered as a rescue therapy for selected patients with cardiac arrest when conventional CPR is failing in settings in which it can be implemented (weak recommendation, very low certainty of evidence). ECPR is increasingly used to support circulation in patients with cardiac arrest refractory to conventional CPR. Some observational studies suggest the use of extracorporeal life support (ECLS) if cardiac arrest is associated with PE. ECPR maintains vital organ perfusion while potential reversible causes of the cardiac arrest can be identified and treated. ECPR can be considered in select patients when rapid expert deployment is possible; however, the optimal patient selection and timing of the therapy are not well defined. The recommendations on ECPR derive from heterogeneous individual studies that are difficult to interpret, mainly because of confounding. Randomised controlled trials (RCTs) are not available. This recent weak recommendation takes the extremely high mortality rate of patients with cardiac arrest, particularly when the arrest is refractory to standard advanced cardiac life support interventions (i.e., cardiac arrest when conventional CPR is failing) in account. Therefore, the potential for benefit and the value of this intervention remain despite the overall low certainty of supporting evidence and lack of randomised trials.

Coronary thrombosis

Obstructive coronary artery disease (CAD) is the most common condition underlying OHCA in adults. The clinical spectrum of CAD includes ventricular arrhythmias due to acute ischaemia, those presenting during the acute and convalescent stages of myocardial infarction and arrhythmias related with post-myocardial infarction scar or ischaemic remodelling. Significant or acute coronary stenosis are especially prevalent in the presence of shockable rhythms (VF/VT) and ST-elevation in the post-arrest ECG, although a significant percentage of acute coronary lesions has been reported among...
patients with ROSC and no ST-elevation (Table 5). Conversely, the presence and role of CAD in non-shockable rhythms (PEA or asystole) remains uncertain, since coronary angiography is less frequently performed in such cases.242

Evidence based recommendations for the suspicion and management of coronary thrombosis as the cause of OHCA derive from the 2019 ILCOR CoSTR summary,238 the 2015 ILCOR CoSTR on acute coronary syndromes (ACS),243 the European Society of Cardiology Guidelines,244–246 the consensus statement from the European Association for Percutaneous Cardiovascular Interventions (EAPCI)237 and the American Heart Association (AHA) scientific statement.242 Guidelines were assessed according to the AGREE-II framework. Additionally, focused literature search for an evidence update was performed and recommendations were established by consensus within the writing group.

Prevent and be prepared

Encourage cardiovascular prevention

Tackling the onset and progression of CAD by means of primary and secondary cardiovascular prevention, including healthy lifestyles and adherence to evidence-based medications may be the first step to reduce the risk of acute cardiovascular events, including OHCA.246,248 Cardiac rehabilitation for patients after acute coronary syndrome (ACS) has proven effective at reducing the risk of subsequent events,249 but it remains underutilised and should be encouraged.250,251

Endorse health education

Reducing time from symptom onset to first medical contact is a well-known area for improvement. This could be attained by educational campaigns to increase public awareness on the importance of recognising symptoms of myocardial infarction (chest pain) and early alerting the EMS.245

Promote layperson basic life support (BLS)

Initiatives promoting BLS training among the general public might improve awareness and the likelihood of bystander intervention in OHCA, increasing the chances of good outcome. Further information is provided in section 12 (education). Particularly, training should involve high-risk groups such as relatives of patients with previous ACS.252,253 A systematic review of studies addressing BLS training for family members of high-risk cardiac patients reported adequate disposition and capacity to learn,254 but reaching this group may be challenging. Additional later studies have shown positive results of implementing BLS training targeted at patients and their relatives within cardiac rehabilitation programs.255,256

Ensure adequate resources

Regional STEMI networks have contributed to reduce reperfusion times and improve patient outcomes.257–262 These initiatives should be encouraged and provided with sufficient human and material resources and adequate training of the staff (including ECG interpretation and advanced life support).263

Improve quality management systems and indicators

Data concerning OHCA in the setting of ACS have irregularly been reported or excluded from mortality analyses. Seeking quality standards similar to those established for non-OHCA ACS might enhance quality monitoring and lead to better outcomes.243 However, the particular characteristics of OHCA-ACS patients may require categorising these cases separately and pursuing appropriate and reliable quality indicators.264

Detect parameters suggesting coronary thrombosis and activate STEMI network

Post-arrest 12-lead ECG may present unspecific alterations that hinder interpretation, and criteria suggesting coronary occlusion (i.e. bundle branch block, hyperacute T-waves, diffuse ST depression with V1/aVR ST-elevation) if symptoms of ischaemia are present.245 (Ibanez 2018, 119) may not necessarily apply to OHCA patients. Given the limitations of a post-arrest ECG to predict coronary occlusion,265,266 all available information should be gathered to make decisions, including specific clinical features such as chest pain prior to arrest or known history of CAD. Once clinical suspicion is established, the STEMI network should be activated to facilitate early reperfusion.

Resuscitate and treat possible causes (establish reperfusion strategy)

Patients with sustained ROSC

Although prospective randomised trials are lacking, there is general consensus that successfully resuscitated STEMI patients should undergo immediate reperfusion, as extrapolated from recommendations regarding non-OHCA STEMI patients.242,243,245,247 Primary percutaneous coronary intervention (PCI) is the strategy of choice and should be performed in ≤120 min from diagnosis.242,243,245,247 Pre-hospital fibrinolysis may be administered if a greater delay is expected, unless resuscitation efforts were prolonged or traumatic or other contraindications are present.242,243,245,247 Resuscitated STEMI patients who remain comatose after ROSC constitute a highly heterogeneous subgroup with a poorer prognosis, but there is no current evidence to discourage urgent coronary angiography.243

In patients with ROSC and no-STEMI criteria, two systematic reviews reported benefits of performing PCI,267,268 although the timing of coronary angiography remains controversial. The COACT trial showed no benefit of emergent compared to delayed coronary angiography in 90-

| Table 5 – Prevalence of significant coronary artery disease among patients with ventricular fibrillation/pulseless electrical tachycardia out-of-hospital cardiac arrest. |
|-----------------|-----------------|-----------------|
| | ROSC | Refractory VF/pVT |
| | ST elevation | No ST elevation | |
| Prevalence of significant CAD | 70–85% | 25–50% | 75–85% |
| Prevalence of acute lesions | 70–80% | 25–35% | 60–65% |

days survival among patients with initial shockable rhythm and no STEMI or another non-cardiac cause for OHCA who remained unconscious after ROSC. However, the higher survival than expected in both groups may have lessened the power of the trial. Until new evidence from ongoing randomised trials is available, an individualised approach considering patient characteristics, ECG findings and haemodynamic condition is recommended. Brief evaluation in the emergency department or intensive care unit may be considered to exclude obvious non-coronary causes of OHCA and check patient’s status. If ongoing myocardial ischaemia is suspected or the patient is haemodynamically or electrically unstable, early coronary angiography (≤120 min) should be performed. In resuscitated stable patients without STEMI, a delayed angiography strategy would be considered.

Patients with no sustained ROSC

Decisions regarding patients who do not achieve sustained ROSC despite resuscitation are challenging, and should be individualised considering patient and the setting conditions and the available resources. Further information on termination of resuscitation decisions is provided in the ERC Guidelines on Ethics. Consistent with the principles outlined in those guidelines, routine coronary angiography cannot be recommended in this subset of patients with refractory OHCA, and should be individualised after careful evaluation of the benefit/futility ratio, available resources and expertise of the team.

Although mechanical CPR has not proven superiority to conventional CPR, it may facilitate delivering high-quality chest compressions during transportation of patients or during coronary angiography. Special attention must be paid to minimising interruption of compressions and any delay to defibrillation. A recent systematic review on ECPR showed no conclusive evidence to support or discourage its use for IHCA or OHCA for both adults and children. Accordingly, ILCOR considers ECPR for selected patients when conventional CPR is failing (weak recommendation, very-low certainty of evidence). However, a later large registry study including 13,191 patients with OHCA found no association between ECPR and improved outcome compared with conventional CPR, although certain features (initial shockable rhythm, transient ROSC) leading to better outcomes in the ECPR group were identified. Randomised trials of ECPR initiated out of hospital (clinicaltrials.gov NCT02527031) and in hospital (clinicaltrials.gov NCT03101787 and NCT01511666) will contribute to increase evidence on patient selection, risk-benefit and cost-effectiveness.

Cardiac tamponade

Cardiac tamponade occurs when the pericardial sac is filled with fluid under pressure, which leads to compromise of cardiac function and ultimately cardiac arrest. The condition most commonly occurs after penetrating trauma and cardiac surgery. Mortality is high and immediate decompression of the pericardium is required to give corrective treatment (trauma/Special circumstances – TCA; cardiac surgery/Special circumstances – cardiac surgery) in conjunction with signs suggestive of a pneumothorax (preceding respiratory distress, hypoxia, absent unilateral breath sounds on auscultation, chest crepitations and subcutaneous emphysema and mediastinal shift (tracheal deviation, unilateral breath sounds on auscultation, chest crepitations and subcutaneous emphysema)). The symptoms include haemodynamic compromise (hypotension or cardiac arrest) in conjunction with signs suggestive of a pneumothorax. Tension pneumothorax may be caused by trauma, severe asthma and other respiratory disease, but can also be iatrogenic following invasive procedures, e.g. central line insertion. Institution of positive pressure ventilation can convert a pneumothorax into a tension pneumothorax.

The prevalence of tension pneumothorax is approximately 0.5% in all major trauma patients treated in the prehospital setting and 13% of those developing TCA.

Recommendations in this section are based on focused literature search for evidence update and 1 systematic review.

Diagnosis

Diagnosis of tension pneumothorax in a patient with cardiac arrest or haemodynamic instability must be based on clinical examination or POCUS. The symptoms include haemodynamic compromise (hypotension or cardiac arrest) in conjunction with signs suggestive of a pneumothorax (preceding respiratory distress, hypoxia, absent unilateral breath sounds on auscultation, chest crepitations and subcutaneous emphysema and mediastinal shift (tracheal deviation and jugular venous distention)). During CPR presentation is not always classical, but when it is suspected in the presence of cardiac arrest or severe hypotension, chest decompression by open thoracostomy should be carried out immediately if the expertise is available.

Treatment recommendations

Needle decompression

Needle chest decompression is rapid and within the skill set of most ambulance personnel. It is frequently carried out with standard IV cannulae. However, a significant proportion of patients have a chest wall thickness which makes needle decompression with a standard length 14-gauge cannula ineffective. A needle length of at least 7 cm is required to reach the pleural space at mid-clavicular position in the 2nd intercostal space in 90% of all attempts in an average population. Needle decompression in the 4th/5th ICS at anterior axillary line has the lowest predicted failure rate compared to the 4th/5th ICS midaxillary line and the 2nd ICS MCL.

Cannulae are also prone to kinking and blockage. Any attempt at needle decompression under CPR must be followed by an open thoracostomy or a chest tube if the expertise is available.

Tension pneumothorax

Tension pneumothorax is a reversible cause of cardiac arrest and must be excluded during CPR. It may lead to cardiac arrest by obstructing venous return through mediastinal shift. Tension pneumothorax may be caused by trauma, severe asthma and other respiratory disease, but can also be iatrogenic following invasive procedures, e.g. central line insertion. Institution of positive pressure ventilation can convert a pneumothorax into a tension pneumothorax. The prevalence of tension pneumothorax is approximately 0.5% in all major trauma patients treated in the prehospital setting and 13% of those developing TCA.

Recommendations in this section are based on focused literature search for evidence update and 1 systematic review.

Diagnosis

Diagnosis of tension pneumothorax in a patient with cardiac arrest or haemodynamic instability must be based on clinical examination or POCUS. The symptoms include haemodynamic compromise (hypotension or cardiac arrest) in conjunction with signs suggestive of a pneumothorax (preceding respiratory distress, hypoxia, absent unilateral breath sounds on auscultation, chest crepitations and subcutaneous emphysema and mediastinal shift (tracheal deviation and jugular venous distention)).

During CPR presentation is not always classical, but when it is suspected in the presence of cardiac arrest or severe hypotension, chest decompression by open thoracostomy should be carried out immediately if the expertise is available.

Treatment recommendations

Needle decompression

Needle chest decompression is rapid and within the skill set of most ambulance personnel. It is frequently carried out with standard IV cannulae. However, a significant proportion of patients have a chest wall thickness which makes needle decompression with a standard length 14-gauge cannula ineffective. A needle length of at least 7 cm is required to reach the pleural space at mid-clavicular position in the 2nd intercostal space in 90% of all attempts in an average population.

Needle decompression in the 4th/5th ICS at anterior axillary line has the lowest predicted failure rate compared to the 4th/5th ICS midaxillary line and the 2nd ICS MCL.

Cannulae are also prone to kinking and blockage. Any attempt at needle decompression under CPR must be followed by an open thoracostomy or a chest tube if the expertise is available.
Thoracostomy
In TCA patients, chest decompression effectively treats tension pneumothorax and takes priority over all other measures. Open thoracostomy is simple to perform and used routinely by several prehospital services. The thoracostomy is the first stage of standard chest tube insertion – a simple incision and rapid dissection into the pleural space (see traumatic cardiac arrest). Chest drain insertion can be carried out following successful resuscitation.

Toxic agents
Overall, poisoning rarely causes cardiac arrest or death, although the latest reports show that, among human exposure to toxic agents, those with more serious outcomes (moderate, major or death) have increased 4.45% per year since 2000. The top 5 poisoning substance classes in 2018 were analgesics, household cleaning substances, cosmetics and personal care products, sedatives, hypnotics, antipsychotics and antidepressants. Intentional (i.e. suicide) and accidental poisoning from pesticides are both significant causes of mortality. Poisoning is an important cause of OHCA in younger age groups. Inappropriate drug dosing, drug interactions and other medication errors can also cause harm. Accidental poisoning is more common in children than in adults. Homicidal poisoning is uncommon. Industrial accidents, warfare or terrorism can also cause exposure to toxins.

Recommendations in this section are based on systematic reviews, using a dual review approach. For opioid toxicity ILCOR published an evidence update. Given the infrequent nature of most poisonings, clinical effectiveness of many interventions often is based on low-certainty evidence including animal studies and human case series or case reports, with significant publication bias. The likelihood of confirmatory RCTs to prove effectiveness of such results is poor. Hence, most of the following updates and related recommendations are weak and based on low level of evidence.

Cardiovascular emergencies in acute poisoning
Toxic agents can produce cardiovascular emergencies via indirect (mediated by metabolic disorders) or direct mechanisms. In the latter case, toxic agents can modify blood pressure, myocardial contractility and conductivity. Hypertensive emergencies can occur during acute poisonings with adrenergic agonists such as cocaine or amphetamines. The best management consists of sedation with benzodiazepines, vasodilators and pure alpha-antagonists.

Hypotension can be caused by many toxic agents which lead to hypovolaemia due to acute losses (pesticides, mushrooms, lithium, diuretics, cholinomimetics) or to vasodilatation (alcohol, anti-hypertensive medications, anticholinergics, tricyclic antidepressants, calcium channel blockers, opioids). Toxic agents can also cause tachy- or bradycardia (anticholinergics, sympathomimetics, anti-arrhythmic drugs, halogenated hydrocarbons, etc.). Medications with quinidine-like effects should be treated with sodium bicarbonate (1–2 mmol kg\(^{-1}\)) IV. It is important to keep in mind specific treatments where available (calcium channel blocker and beta-blocker, digoxin intoxications) on top of the ALS management of arrhythmias.

Neurological emergencies in acute poisoning
Toxic agents can also be responsible for neurological emergencies, such as reduced levels of consciousness, seizures and movement disorders. Clinically, in metabolic (or toxic) comas, oculo-cephalic and oculo-vestibular reflexes are usually preserved and motor response is usually symmetrical. Pupillary size can guide the diagnosis (miosis being typical of opioid overdose and mydriasis of anticholinergic overdose). Many medications can cause seizures via direct effect (anti-histamine, antidepressant, antipsychotics, antibiotics, lithium, caffeine, cocaine, amphetamines, pesticides, carbon monoxide). Treatment of such emergencies must follow the ALS algorithm including early advanced airway management (see ALS Guidelines).

Prevention of cardiac arrest
Assess the patient using the systematic ABCDE approach. Airway obstruction and respiratory arrest secondary to a decreased conscious level is a common cause of death after self-poisoning (benzodiazepines, alcohol, opiates, tricyclics, barbiturates). Early tracheal intubation of the unconscious patient by trained personnel may decrease the risk of aspiration. Drug-induced hypotension usually responds to IV fluids, but occasionally vasopressor support is required. Measure serum electrolytes (particularly potassium), blood glucose and arterial blood gases. Retain samples of blood and urine for toxin analysis. Patients with severe poisoning should be cared for in a critical care setting. If available, once the patient has been stabilised, check for any history that can provide information on the toxic agent involved. If an antidote is available administer it as soon as possible in order to improve outcome. The causative agent has been shown to be strongly associated with outcome in poisoning-induced OHCA.

Modifications to resuscitation
In cardiac arrest caused by toxic agents specific treatment measures such as antidotes, decontamination and enhanced elimination should be considered. There are several specific precautions regarding resuscitation of intoxicated patients. Personal safety is most important. A careful approach to the patient must be considered in suspicious cases, unexpected cardiac arrests or in cases with more than one casualty. Mouth-to-mouth ventilation in the presence of chemicals such as cyanide, hydrogen sulphide, corrosives and organophosphates should be avoided as it might lead to poisoning of the rescuer.

The toxin(s) need to be identified as early as possible. Relatives, friends and ambulance crews can provide useful information. Examination of the patient may reveal diagnostic clues such as odours, needle marks, pupil abnormalities and signs of corrosion in the mouth.

All reversible causes of cardiac arrest should be excluded in cardiac arrest patients due to toxic agents. Life-threatening tachyarrhythmias can be caused by toxic agents directly or indirectly, e.g. due to electrolyte abnormalities. Hypo- or hyperthermia may occur during drug overdose as well. It might be necessary to continue resuscitation for a prolonged time period, particularly in young patients, as the poison may be metabolised or excreted during extended resuscitation measures.

There are a number of alternative approaches which may be effective in severely poisoned patients including higher doses of medication than in standard protocols (e.g. high-dose insulin euglycemia), non-standard drug therapies (e.g. IV lipid emulsion), haemodialysis.

Regional or national poison centres for information on treatment of the poisoned patient and On-line databases for information on toxicology and hazardous chemicals are available for consultation. The International Programme on Chemical Safety (IPCS) lists poison
Decontamination
Decontamination is a process of removal of the toxic agent from the body dependent on the route of exposure:

For dermal exposure clothing should be removed and copious irrigation with water for at least 15 min should be commenced. Neutralising chemical substances should not be used, as these might cause further tissue damage.

For ocular lesions immediate copious irrigation with normal saline for at least 30 min in the most severe cases should be commenced. Topical medication should not be applied before an expert evaluation has taken place.

Gastric lavage should not be performed routinely, if at all, for the treatment of poisoned patients. In the rare instances in which gastric lavage is indicated, it should only be performed by individuals with proper training and expertise. It is only indicated in case of assumption of a potentially lethal amount of toxic agent and only within one hour of ingestion.

Gastric lavage may be associated with life-threatening complications, e.g. aspiration pneumonitis, aspiration pneumonia, oesophageal or gastric perforation, fluid and electrolyte imbalances or arrhythmias. It is contraindicated if the airway is not protected and if a hydrocarbon with a high risk of aspiration potential or a corrosive substance has been ingested.

The preferred method of gastrointestinal decontamination in patients with an intact or protected airway is activated charcoal, but the evidence that active charcoal improves outcome is limited. It is most effective if given within 1 h of the time of ingestion. The recommended dose is 0.5–1 g kg\(^{-1}\) both in paediatric and adult patients. Activated charcoal does not bind lithium, heavy metals and toxic alcohols. Most common side effects are vomiting and constipation. It is contraindicated if the airway is not protected, in case of ingestion of corrosive, irritant agents or hydrocarbons with a high potential of aspiration.

Whole bowel irrigation (WBI) can be considered for potentially toxic ingestions of sustained-release or enteric-coated drugs particularly for those patients presenting later than 2 h after drug ingestion when activated charcoal is less effective. WBI can be considered for patients who have ingested substantial amounts of iron, lithium, or potassium as the morbidity is high and there is a lack of other potentially effective options for gastrointestinal decontamination. WBI can be considered for removal of ingested packets of illicit drugs in “body packers.” However, controlled data documenting improvement in clinical outcome after WBI are lacking. WBI is contraindicated in patients with bowel obstruction, perforation, or ileus, and in patients with hemodynamic instability or compromised unprotected airways. It should be used cautiously in debilitated patients and in unstable patients. The concurrent administration of activated charcoal and WBI might decrease the effectiveness of the charcoal.

Helpful websites:

Specific therapeutic measures
There are a few specific therapeutic measures for poisoning – decontamination, enhancing elimination and the use of specific antidotes. Many of these interventions should only be used based on expert advice. For up-to-date guidance in severe or uncommon poisonings, seek advice from a poisons centre.

Routine administration of laxatives (cathartics) must be avoided, emetics should not be used as well (e.g. ipecac syrup).

Enhanced elimination
The aim of this technique is to accelerate elimination of substances that have already been absorbed. Non-invasive strategies include multiple-dose activated charcoal (MDAC) and forced diuresis (with urine alkalisation. Invasive techniques include haemodialysis, hemofiltration, plasmapheresis.

MDAC administered over several hours can increase elimination for certain drugs, especially in high doses of toxic agents, drugs that tend to form bezoars, agents that slow the GI motility, sustained release or toxic agents with elevated biliary excretion and enterohepatic circulation. The initial dose is 1 g kg\(^{-1}\), followed by 0.25–0.5 g kg\(^{-1}\) every 2–4 h.

Forced diuresis is a very useful technique for drugs with elevated renal excretion, low protein binding and low volume of distribution. Indications are poisonings from amanita phalloides (death cap fungus), phenobarbital, salicylates and ethylene glycol.

Urinary alkalisation (urine pH ≥ 7.5) involves an IV sodium bicarbonate infusion. It is most commonly performed in patients with salicylate intoxication who do not need dialysis. Consider urine alkalisation in addition with forced diuresis (3–6 ml kg\(^{-1}\) h\(^{-1}\)) in severe poisoning by phenobarbital and herbicides. Hypokalaemia is the most common complication.

Haemodialysis removes drugs or metabolites with low molecular weight, low protein binding, small volumes of distribution and high water solubility. In hypotenison, use continuous veno-venous hemofiltration (CVVH) or continuous veno-venous haemodialysis (CVVHD). Indications for haemodialysis include: worsening despite standard treatment; lethal blood levels of a toxic agents or certain history of lethal dose; patients with alterations of normal excretion systems or kidney injury secondary to the intoxication; poisonings with substances that produce highly toxic metabolites. Main indications for haemodialysis are poisonings with ethylene glycol, methanol, lithium, barbiturates, salicylates, paraquat.

Antidotes
Antidotes interact with the toxic agent by means of different mechanisms, they make it less effective and decrease or stops its biological effects. Although basic supportive care remains the key treatment of poisonings, antidotes can be sometimes life-saving or may reduce morbidity as well as medical and other resources required in the care of a patient. In areas remote from hospital or in developing countries where facilities for supportive care are often limited and transport to treatment centres may take a long time, the availability of antidotes is even more essential. Nano-antidotes have shown efficacy in proof-of-concept studies, but require clinical validation (Table 6).

Specific toxic agents

Special settings

Healthcare facilities

Cardiac arrest in the operating room (OR)
Cardiac arrest in the operating room (OR) is a rare but a potentially life-limiting event with a mortality rate of more than 50%. In the event of cardiac arrest in the OR, follow the ALS algorithm with appropriate
Table 6 – Specific toxic agents.

<table>
<thead>
<tr>
<th>Drugs</th>
<th>First Line</th>
<th>Consider</th>
<th>Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular and neurological medication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digoxin</td>
<td>Lidocaine – ventricular arrhythmias</td>
<td>Digoxin-Fab 80 mg, repeated as required<sup>308,309</sup></td>
<td>Calcium channel blockers Class 1a antiarrhythmic drugs</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>IV calcium 1–2 g every 10–20 min/ 0.02–0.04 g/kg/h High-dose insulin euglycemic therapy Catecholamines Atropine<sup>309,310–323</sup></td>
<td>Pacing VA-ECMO Intravenous lipid emulsion<sup>324,325</sup></td>
<td></td>
</tr>
<tr>
<td>Beta-blockers</td>
<td>High-dose insulin euglycemic therapy Catecholamines<sup>325–328</sup></td>
<td>Glucagon</td>
<td>Intravenous lipid emulsion<sup>328</sup></td>
</tr>
<tr>
<td>Tricyclic antidepressants</td>
<td>Sodium bicarbonate - broad complex ventricular arrhythmias: 1–2 mmol kg<sup>-1</sup>, target pH 7.45 – 7.55<sup>333–339</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroleptics</td>
<td>Sodium bicarbonate - broad complex ventricular arrhythmias: 1–2 mmol kg<sup>-1</sup> Dantrolene, Bromocriptine - neuroleptic malignant syndrome<sup>340</sup></td>
<td>Dopamine</td>
<td>Adrenaline Dobutamine<sup>341</sup></td>
</tr>
<tr>
<td>Anticonvulsants</td>
<td>Sodium bicarbonate - broad complex ventricular arrhythmias: 1–2 mmol kg<sup>-1</sup> Dantrolene Carnitine, Naloxone – valproic acid<sup>342</sup></td>
<td>Haemodialysis</td>
<td>ECLS – carbamazepine<sup>343,344</sup></td>
</tr>
<tr>
<td>Benzodiazepines</td>
<td></td>
<td></td>
<td>Flumazenil<sup>345,346</sup></td>
</tr>
<tr>
<td>Local anaesthetics</td>
<td>Intravenous lipid emulsion: 20% lipid emulsion, 1.5 ml kg<sup>-1</sup> over 1 min followed by an infusion at 0.25 ml kg<sup>-1</sup> min<sup>-1</sup> for up to 60 min. 2 bolus repetitions, max cumulative dose 12 ml kg<sup>-1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drugs of abuse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioids</td>
<td>Naloxone 0.4–2 mg, repeat every 2–3 min (strong recommendation, very low-quality evidence)<sup>354,355</sup></td>
<td>Alpha-blockers, calcium channel blockers, nitro-glycerine – hypertension<sup>358–361</sup></td>
<td>Beta-blockers not as first line management<sup>362–364</sup></td>
</tr>
<tr>
<td>Cocaine</td>
<td>Benzodiazepines - seizure control<sup>356,357</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphetamines</td>
<td>Benzodiazepines - seizure control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic asphyxiants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanide</td>
<td>Hydroxycobalamin 70 mg/kg/1–3 min<sup>369,370</sup></td>
<td>Sodium thiosulfate<sup>371</sup></td>
<td>Amyl nitrite, sodium nitrite avoid if smoke inhalation<sup>372,373</sup></td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>Oxygen</td>
<td>Hyperbaric oxygen<sup>374–379</sup></td>
<td></td>
</tr>
<tr>
<td>Hydrogen sulphide</td>
<td>Nitrite Hydroxycobalamin<sup>380–384</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local asphyxiants (Irritant gases)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic solvents and halogenated hydrocarbons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotoxins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botulinum toxin</td>
<td>Antitoxin<sup>388,389</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viper envenomation</td>
<td>Antivenom</td>
<td></td>
<td>Polyvalent immune Fab<sup>390</sup></td>
</tr>
<tr>
<td>Marine biotoxins</td>
<td>Antivenom, magnesium – jellyfish<sup>391</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
modifications. The incidence of perioperative cardiac arrest is higher in children, especially newborns and infants as well as in older patients.394

Strong predictors of Intraoperative Cardiac Arrest (IOCA) are associated with higher American Society of Anesthesiologists (ASA) physical status, current sepsis, urgent/emergency case, anaesthetic technique and age.392,395 In addition, there are also several factors such as hypoxia, acute blood loss with shock, pulmonary embolism, myocardial infarction, arrhythmia or electrolyte disturbances, which all can be the cause or confounding factors in an intraoperative cardiac arrest.392,396,397 Additional risk factors for intraoperative cardiac arrest for patients in prone position, such as major spinal surgery, can include air embolism, wound irrigation with hydrogen peroxide and occluded venous return.

This section is based on recent European Society of Anaesthesiology and Intensive Care (ESAIC) and ERC guideline process (27 PICO questions; 28,221 titles screened/452 publications selected).

Early recognition of intraoperative cardiac arrest

In many cases of intraoperative cardiac arrest, physiological deterioration is gradual and the cause of the cardiac arrest is known and hence the arrest anticipated.398 In those where this is not the case, follow the ALS algorithm and prioritise the reversible causes. If the patient deteriorates, call for help immediately. Inform the perioperative team of the deterioration and a possible impending cardiac arrest. Ensure that sufficient skilled assistance is present.

High-risk patients will often have invasive blood pressure monitoring (ABP), which is invaluable for recognition and treatment of cardiac arrest. If cardiac arrest is a strong possibility, a defibrillator should be on standby. Apply self-adhesive defibrillation electrodes before induction of anaesthesia, ensure adequate venous access, and prepare resuscitation drugs and fluids. Use fluid warmers and forced air warmers to limit perioperative hypothermia and monitor the patient’s temperature.

Chest compressions and defibrillation

In adult IOCA patients with shockable rhythm, immediate defibrillation should be performed. A high incidence of reversible causes is to be expected. This could be hypoxemia due to airway problems, bronchospasm or equipment failure, intoxications caused by drug error, hypovolemia due to blood loss, anaphylactic reactions, thromboembolism including air embolism and tension pneumothorax or even cardiac tamponade after central line insertion.

The majority of events is covered by standard ALS measures. However, closed chest compressions are not very effective in hypovolemia, cardiac tamponade or tension pneumothorax (see corresponding section). Therefore closed chest compressions should not delay addressing these particular reversible causes. To optimise closed chest compressions the position and height of the operating table or trolley should be adjusted. CPR is ideally carried out in the supine position of the patient, but is possible in patients in prone position as well.399,400 Open cardiac compressions should be considered early as an effective alternative to closed chest compressions in the operating room environment.398

Airway management

Advanced airway management (if not already undertaken) and ventilation with 100% oxygen should be performed as soon as possible.397

Reversible causes

Hypovolaemia

Depending on the suspected cause, initiate volume therapy with warmed blood products and/or crystalloids, in order to rapidly restore intravascular volume. At the same time, initiate immediate haemorrhage control, e.g. surgery, endoscopy, endovascular techniques.37 Chest compressions are only of use if the circulating volume is replaced simultaneously. In the initial stages of resuscitation crystalloid solutions are acceptable. In case of massive blood loss immediate transfusion of blood products is required. A focused ultrasound examination can help to confirm the course of cardiac arrest and target resuscitative interventions. (see hypovolaemia section).

Anaphylaxis

The incidence of immune-mediated anaphylaxis during anaesthesia ranges from 1 in 10,000 to 1 in 20,000. Neurmuscular blocking drugs are the commonest cause, being associated with 60% of cases. The associated morbidity and mortality are high, particularly if there are delays in the diagnosis and management.401 Initial management of anaphylaxis starts with removal of the allergen if possible and then follows the ABCDE approach and the management principles outlined in the chapter on anaphylaxis. Adrenaline is the most effective drug in anaphylaxis and should be given as early as possible. In contrast to alternative anaphylaxis scenarios it might be appropriate for anaesthetists to give adrenaline by the IV route. Repeated doses of adrenaline maybe necessary (see anaphylaxis section below).

Systemic toxicity of local anaesthetic

Cardiac arrest is a rare but well recognized complication of local anaesthetic (LA) overdose, especially following inadvertent intravascular injection. Direct action of the LA on cardiac myocytes causes cardiovascular collapse, usually within 1–5 min of injection, but onset may range from 30 s to as long as 60 min.402 Significant hypotension, dysrythmias, and seizures are typical manifestations, but the diagnosis maybe one of exclusion.402 Intravenous lipid therapy has been used as a rescue therapy to treat cardio-vascular collapse and cardiac arrest, but its efficacy is controversial.403 In the absence of documented harm, guidelines recommend that 20% lipid emulsion should be available for use wherever patients receive large doses of LA (e.g. operating rooms, labour wards and the emergency department).404 Stop injecting the LA and call for help. Secure and maintain the airway and, if necessary, intubate the trachea. Give 100% oxygen and ensure adequate ventilation (hyperventilation may help by increasing plasma pH in the presence of metabolic acidosis). Control seizures using a benzodiazepine, thiopentone or propofol. Give an initial IV bolus injection of 20% lipid emulsion at 1.5 ml kg−1 over 1 min and then start an infusion at 15 ml kg−1 h−1. If ROSC has not been achieved at 5 min, double the rate of lipid infusion and give a maximum of two additional lipid boluses at 5-min intervals until ROSC has been achieved. Do not exceed a maximum cumulative dose of 12 ml kg−1.405,406 If the patient does not respond to treatment ECPR should be considered.

Crew resource management

Every resuscitation event should have a designated team leader who directs and coordinates all staff and the components of the resuscitation, with a central focus on minimising no-flow times and addressing the reversible causes simultaneously. Operative surgery needs to be stopped unless it is addressing a reversible cause of the...
cardiac arrest. Patient access and resuscitation tasks may necessitate covering the surgical field and withdrawing the surgical team from the patient. Team tasks should be prioritised, good quality BLS should be ensured, relevant reversible causes should be identified and non-priority tasks avoided. If the patient is not responding to resuscitative efforts (i.e. \(\text{EtCO}_2 < 2.7 \text{kPa/20 mmHg} \)), the quality of CPR needs to be improved.\(^{407}\)

Successful management of intraoperative cardiac arrest requires not only individual technical skills and a well-organized team response, but also an institutional safety culture embedded in everyday practice through continuous education, training and multidisciplinary cooperation. Corresponding institutional protocols (e.g. massive transfusion protocols) and checklists help to optimise the response to cardiac arrest in the operating room environment.

Post resuscitation care

There is lack of evidence to support the use of immediate hypothermia versus no hypothermia after adult intraoperative cardiac with only one single case report showed complete neurological recovery and data suggest improved neurological outcome.\(^{408}\) Targeted temperature management should be applied according to general post resuscitation care.

Cardiac surgery

The incidence of cardiac arrest following cardiac surgery has been reported around 2–5% in recent series, with higher survival rates (around 50%) compared to other scenarios.\(^{409,412}\) This is largely justified by the fact that many causes are reversible; Major causes of cardiac arrest in this setting include ventricular fibrillation (VF), accounting for up to 50% of cases, followed by cardiac tamponade and major bleeding, which often present as PEA.

Evidence based recommendations for the management of cardiac arrest following cardiac surgery derive from the 2019 and 2018 ILCOR CoSTR documents,\(^{103,141}\) the European Association for Cardio-Thoracic Surgery (EACTS) guidelines,\(^{414,415}\) and the Society of Thoracic Surgeons (STS) expert consensus document for the resuscitation of patients who arrest after cardiac surgery.\(^{416}\) Additional focused literature search was conducted for evidence update and consensus was reached within the writing group to establish recommendations.

Prevent and be prepared

Ensure adequate training of the staff in resuscitation technical skills and ALS (Figs. 11 and S3).

Staff involved in the care of post-operative cardiac patients should receive adequate training with periodic refreshers. This should comprise resuscitation technical skills and ALS, including training to perform an emergency resternotomy. Roles should be previously allocated to staff in the intensive care unit (ICU) to favour coordination in case this procedure is required.\(^{417}\)

Ensure availability and well-functioning of emergency equipment

All emergency equipment should be located, adequately marked and periodically checked, including small resternotomy sets containing only the essential elements to open the chest.\(^{415,416}\)

Use safety checklists

First introduced in the surgical environment by the World Health Organization, safety checklists have proven to reduce complications and mortality of non-cardiac surgery, and should be implemented.\(^{418}\) Specific checklists developed for cardiothoracic surgery, including checks on preparations for bleeding, perfusions and ICU preparations should be considered to enhance prevention.\(^{414}\)

Detect cardiac arrest and activate cardiac arrest protocol

Identify and manage deterioration in the postoperative cardiac patient

Early signs of deterioration can be identified in the monitored postoperative patient after careful examination. Hypotension is a common observation to several different complications (Table 7).\(^{419,421}\) Echocardiography should be performed in case of haemodynamic instability, considering transesophageal apical for more precise diagnosis.\(^{422}\) Continuous ECG monitoring allows early identification of arrhythmias; supraventricular tachycardias are the most frequent in this setting.\(^{423}\)

Confirm cardiac arrest by clinical signs and pulseless pressure waveforms

Cardiac arrest can be detected by checking rhythm in the ECG monitor, identifying absent circulation by clinical examination and monitoring of vital signs, including pulseless pressure waveforms (arterial, central venous and pulmonary artery pressures, and pulse oximetry) and rapid decrease in the end-tidal capnography.\(^{415,416}\)

Shout for help and activate cardiac arrest protocol

Once recognised, immediately getting help and activating the cardiac arrest protocol are mandatory.

Resuscitate and treat possible causes

Modifications to the standard ALS algorithm include immediate correction of reversible causes and emergent resternotomy if this is not successful.\(^{415,416}\)

Restore pulsatile cardiac rhythm

In patients with VF/pVT defibrillation of up to three stacked shocks should be prioritised and justifies delaying external chest compressions for as long as one minute.\(^{424,425}\) If these fail, immediate resternotomy is advised.\(^{426}\) In case of asystole or extreme bradycardia, epicardial pacing (DDD mode at 80–100 beats min\(^{-1}\)) and at maximum output voltages) or transcutaneous pacing should be attempted for one minute before initiating chest compressions. PEA should trigger immediate external chest compressions, searching for reversible causes and preparing for early resternotomy. In the presence of a pulseless stimulated rhythm, pacing should be paused to eventually unmask underlying VF and, if indicated, a defibrillation should be provided.\(^{415,416}\)

Compressions and ventilations

If ROSC is not achieved following defibrillation or pacing, or in case of PEA, compressions and ventilations should be initiated while preparing for emergency resternotomy. External compressions should be performed at 100–120 beats min\(^{-1}\), aimed to reach a systolic blood pressure >60 mmHg; failure to attain this value despite adequate performance may indicate tamponade or severe haemorrhage, requiring emergency resternotomy.\(^{415,416}\) Compared with external compressions, internal cardiac massage provides better coronary and systemic perfusion pressure and this sole fact may justify chest reopening.\(^{426,427}\) Airway management in this setting...
follows the usual indications for ALS. In mechanically ventilated patients the position and patency of the tracheal tube should be checked, inspiratory oxygen increased at 100% and positive end-expiratory pressure removed. If a tension pneumothorax is suspected, emergent decompression is advocated.

Drugs during resuscitation

As a general principle previous infusion other than needed for resuscitation should be stopped, with the possible exception of sedatives. Amiodarone (300 mg) or lidocaine (100 mg) may be administered intravenously after three failed shocks to treat VF/pVT, and should be avoided in patients who collapse shortly after cardiac surgery, if defibrillation and early resternotomy are likely to revert cardiac arrest. However, lower doses may be considered in peri-arrest situations.

Early resternotomy

Refractory cardiac arrest requires performing resternotomy within 5 min, in order to perform internal massage or defibrillation and eventually correct underlying causes. This has shown to be a safe procedure in the ICU, leading to significantly higher survival rates, especially if performed with minimum delay and in the presence of surgically repairable problem on reopening. Resternotomy should be conceived as part of the resuscitation protocol of postoperative cardiac patients until at least day 10 after surgery.

Circulatory support devices

In patients supported by in-aortic balloon pump who present cardiac arrest, the device may contribute to improve coronary and brain perfusion if coordinated with cardiac massage (1:1 ratio, with maximal amplification). The ECG trigger of the balloon is not reliable during resuscitation and should be switched to pressure trigger mode, or to internal mode at 100 beats min⁻¹ if massage is interrupted for a significant interval. ECPR may be considered if resternotomy fails to revert cardiac arrest or as an alternative for patients undergoing minimally invasive cardiac surgery (i.e. thoracotomy) or who arrest >10 days after initial sternotomy. However, there is limited data addressing this specific scenario, since most studies have studied its usefulness to treat cardiogenic shock or have focused on paediatric populations. A small series of twenty-four adult patients who received ECPR support for postoperative cardiac arrest reported overall successful weaning from extracorporeal membrane oxygenation (ECMO) in sixteen patients (66.7%), eight of whom survival to hospital discharge (33.3%) with most of patients dying because of multiple organ failure.

| Table 7 – Common causes of patient deterioration after cardiac surgery and management. |
|--|--|
| Haemorrhage | • “Medical” bleeding: post-operative coagulopathy |
| | • “Surgical” bleeding: operative trauma |
| Low cardiac output state | • Perform echocardiography to assess ventricular function|
| | • Ensure adequate ventricular filling |
| | • Correct systemic vasoconstriction |
| | • Maintain aortic/ventricular coordination |
| | • Correct metabolic disturbances and hypocalcaemia |
| | • Consider inotropic or mechanical circulatory support |
| Graft or valve dysfunction | • Check for ECG abnormalities |
| | • Perform echocardiography |
| | • Consider percutaneous intervention or re-operation |
| Arrhythmias | • Correct electrolytic disturbances |
| | • Consider antiarrhythmic, electrical cardioversion or pacing|
| Vasodilation | • Correct specific underlying causes |
| | • Consider haemodynamic-guided IV fluid therapy |
| | • Consider vasopressor support |

Diastolic dysfunction	Correct metabolic disturbances
Correct systemic vasoconstriction	Correct specific underlying causes
Maintain aortic/ventricular coordination	Consider percutaneous intervention or re-operation
Correc	
Catheterisation laboratory
The type of patients treated and procedures performed in the catheterisation laboratory has evolved over the last years towards greater complexity. More critically ill patients now undergo percutaneous coronary intervention (PCI) or implant of ventricular assist devices, and the volume of structural heart interventions, mostly offered to high-risk patients who are unfit for surgery, is rapidly increasing (i.e. percutaneous valve replacement or repair, leaks, septal defects or left atrial appendage closure). As a result, cardiac arrest in the catheterisation laboratory may occur in critically ill patients (i.e. cardiogenic shock due to extensive myocardial infarction), but also in stable patients undergoing planned procedures, which carry inherent potential hazards and are extremely sensitive to both technical and human factors.

Updated robust data on the global incidence of cardiac arrest in the catheterisation laboratory are lacking; registries mostly refer to PCI and show incidence rates highly dependent on patient pre-procedural risk.433,434

Evidence based recommendations derive from the ILCOR CoSTR documents238,435,436 and ILCOR systematic reviews,437 expert consensus statements from the European Association of Percutaneous Cardiovascular Interventions (EAPCI),437 the Society for Cardiovascular Angiography and Interventions (SCAI),438 and the International ECMO Network and The Extracorporeal Life Support Organization (ELSO),439 plus focused literature search for evidence update. Where insufficient quality of evidence was obtained, recommendations were established by consensus expert within the writing group.

Prevent and be prepared

Ensure adequate training of the staff in technical skills and ALS
Staff working in the catheterisation laboratory should be adequately trained in resuscitation technical skills and ALS, including team and leadership training (Figs. 12 and S1).435 Protocols for specific emergency procedures (e.g. initiation of mechanical CPR, emergency transcutaneous or transvenous pacing, pericardiocentesis, ventricular assist devices) should be established. On-site emergency drills should be considered to facilitate implementation and familiarisation of the staff.436

Ensure availability and well-functioning of emergency equipment
Emergency equipment should be clearly identified and the staff should be aware of its location to minimise delays if needed. Proper functioning should be regularly tested.

Use safety checklists
The use of safety checklists to minimise human factors should be encouraged,437,438,440 since their use has been associated with fewer procedural complications and improved team communication.441

Detect cardiac arrest and activate cardiac arrest protocol

Check patient’s status and monitored vital signs periodically
Continuous monitoring of vital signs (invasive blood pressure, heart rate and rhythm, pulse oximetry, capnography) facilitates early recognition and management of complications to prevent further deterioration and should be periodically checked. For example, high-degree atrioventricular block can occur during PCI, septal alcohol ablation or transaortic valve replacement (TAVR); chest pain, haemodynamic instability and ST-elevation in the ECG may be an alert for acute stent thrombosis during PCI or coronary ostium occlusion during TAVR; sudden hypotension requires ruling out pericardial tamponade (due to coronary perforation, atrial/ventricular wall perforation or annulus rupture during balloon valvotomy or TAVR) or hypovolaemia in case of vascular complications. Defibrillation pads should be attached to at least all STEMI patients and considered in cases of complex PCI or high-risk patients.438

Consider cardiac echocardiography in case of haemodynamic instability or suspected complication
Cardiac echocardiography can help to detect complications and should rapidly be performed in case of haemodynamic instability. In procedures performed under transoesophageal echocardiography monitoring, this may provide better quality imaging for quicker and more precise identification of complications.422

Shout for help and activate cardiac arrest protocol
Once cardiac arrest is confirmed, the resuscitation team should be called immediately. Even if staff in the catheterisation laboratory should initiate resuscitation without delay, additional support may be required to allow on-going resuscitation while specific procedures to treat possible causes of arrest are performed (i.e. PCI, pericardiocentesis, invasive pacing). Leadership and roles during resuscitation should be clearly identified especially if new rescuers take over, to ensure coordinated and effective performance.

Resuscitate and treat possible causes

Resuscitate according to the modified ALS algorithm
Cardiac arrest in the catheterisation laboratory should be managed according to the ALS protocol, with some modifications.101 In the presence of monitored VF/pVT, consider immediate defibrillation with up to three stacked shocks before starting chest compressions. In case of asystole/PEA, CPR and drugs should be administered according to the ALS protocol.

Check for reversible causes, including the use of echocardiography and angiography.
Identifying reversible causes is especially critical in non-shockable rhythms, for which cardiac echocardiography should be performed, and angiography considered if appropriate. Point of care ultrasonography (POCUS) can help to identify reversible causes of cardiac arrest, although attention should be paid to minimising pauses in chest compression.442–444 In this regard, transoesophageal echocardiography may be helpful to enable continuous, higher-quality imaging assessment without interfering with resuscitation efforts.445,446

Consider mechanical compressions and percutaneous circulatory support devices
A Cochrane review including 11 trials comparing mechanical CPR versus manual chest compressions during CPR for adult patients suffering IHCA or OHCA arrest failed to prove superiority of mechanical over conventional CPR. However, the role of mechanical CPR was recognised as a reasonable alternative in settings where high-quality chest compressions are not possible or dangerous for the provider.272 Delivering quality manual CPR in the catheterisation
laboratory may be challenging due to the presence of the X-ray tube, and may expose the rescuer harmful radiation; for this reason, mechanical CPR should be considered. Percutaneous ventricular assist devices such as intra-aortic balloon pump, Impella® or TandemHeart® may provide circulatory support while performing rescue procedures during cardiac arrest, although their use in this setting has not been extensively evaluated. Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) offers both circulatory and pulmonary support and may be used in cardiac arrest (extracorporeal life support: ECPR), but there is insufficient evidence to systematically recommend such strategy.258 A recent systematic review comparing ECPR to manual or mechanical CPR reported positive outcomes of ECPR in seven studies assessing their use for adult IHCA, although these were handicapped by their observational nature and limited internal validity.273 Other smaller series have reported successful use of ECPR for in-hospital refractory cardiac arrest due to acute myocardial infarction448 or complicating PCI or TAVR.449 Should ECPR be considered, rapid initiation rather than waiting for complete failure of conventional measures is recommended,439,450 since shorter conventional CPR (low-flow) time is a key factor for success.451 Until randomised trials provide more consistent evidence, decisions to use ECPR or other ventricular assist devices should be adapted to the case, availability and expertise of the team.

Dialysis unit
Patients receiving long-term HD are one of the highest risk groups for out-of-hospital cardiac arrest (OHCA), which includes events occurring within dialysis clinics. OHCA occurs 20 times more frequently in dialysis patients compared with the general population.462 Cardiac arrests occurring within a dialysis clinic are predominantly witnessed events and may occur before, during or after dialysis treatment. Studies investigating the timing of cardiac arrest in relation to dialysis have reported that 70–80% of cardiac arrests occurred during HD treatment.453–455 Several risk factors for cardiac arrest in patients receiving long-term HD have been postulated including hyperkalaemia, excessive volume shifts during dialysis, the 2-day inter-dialytic interval, low potassium dialysate fluid, cardiac disease, and non-compliance with diet and dialysis regi-

men.456–461 Although HD patients are susceptible to cardiac arrest in the first 12 h from the start of the HD session,456 the highest risk period is the latter end of the 2-day inter-dialytic interval (e.g. weekend break) as potassium level rises and fluid accumulates.456,458 Historically, the outcome of IHCA in HD patients was deemed to be poor,452 but this may in part relate to the resuscitation strategy and perceived futility. Previous studies have shown a lower survival after IHCA in dialysis patients compared with the general population.363,434 However, a recent study has shown a higher incidence of ROSC (69% compared with 62%), similar survival to hospital discharge (23% compared with 22%), and a slightly higher frequency of favourable neurological status (17% compared with 16%) in HD patients compared with non-dialysis patients.458 Shortfalls in resuscitation practice have been found in both OHCA and IHCA with respect to initiation of CPR and timely first defibrillation for a shockable rhythm in the dialysis patient.458 There are also some special considerations in the approach to resuscitation in the setting of a dialysis clinic, particularly if the event occurs during dialysis.116

Prevention of cardiac arrest in dialysis patients
Hyperkalaemia and volume overload are common causes of cardiac arrest in dialysis patients, but prevention largely relies on dietary and fluid restrictions and dialysis-related factors. Although the delivery of maintenance dialysis three times a week is difficult to overcome, careful dialysis prescription may reduce the risk of cardiac arrest.453,457,465

Treatment of cardiac arrest

Initial steps
Resuscitation should be started following the standard ALS algorithm. A trained dialysis nurse should be assigned to operate the HD machine. The HD machine should be stopped and blood volume returned to the patient with a fluid bolus. As long as the HD machine is not defibrillation-proof it should be disconnected from the patient in accordance with the International Electrotechnical Committee (IEC) standards. The dialysis access should be kept open to use for drug administration.

Modifications to cardiopulmonary resuscitation

Defibrillation
Dialysis clinics are predominantly nurse-led units. An automated external defibrillator (AED) is the standard for delivery of defibrillation in HD facilities but staff training and confidence may influence the rate of nurse-led defibrillation.466 A three-fold increase in odds to hospital discharge with favourable neurological status, has been shown when CPR is initiated by dialysis staff rather than awaiting the arrival of emergency services. Although nurse-led AED placement occurred in only 52.3% of patients, this study also showed a trend towards improved survival with staff-initiated defibrillation in patients with a shockable rhythm.457 Given the higher chance of survival with shockable rhythm, steps are required to avoid delay in defibrillation in dialysis units.

Vascular access
Use dialysis access in life-threatening situations and cardiac arrest.

Potential reversible causes
All of the standard reversible causes (4 Hs and 4Ts) apply to dialysis patients. Electrolyte imbalances and fluid shifts during dialysis are common causes. For management of hyperkalaemic cardiac arrest, refer to the hyperkalaemia section of this chapter.

Post resuscitation care
Dialysis may be required in the early post resuscitation period guided by fluid status and serum biochemistry. Patient transfer to an area with dialysis facilities (i.e. intensive care unit or renal high dependency unit) is essential.
Dentistry

Medical emergencies in a dental office include a variety of situations ranging from psychosomatic disorders precipitated by fear and anxiety to life-threatening situations. The most frequent medical emergencies include vasovagal (pre-) syncope, orthostatic hypotension, hypertensive crisis, hypertension, seizures, moderate allergic reactions, hypoglycaemia, and angina. Life-threatening emergencies commonly arise from myocardial infarction, seizures or exacerbation of asthma. Cardiac arrest in primary dental practice is a rare event with an incidence of 0.002–0.011 cases per dentist per year. A PubMed scoping review was performed on March 27th, 2020 using the keywords “dentistry” OR “dental surgery” AND “cardiac arrest or heart arrest” OR “resuscitation or cardiopulmonary resuscitation” in the last 5 years (n = 271). There were neither RCTs nor systematic reviews identified on this topic. Thus, recommendations are based on the evidence already informing the ERC guidelines 2015. Recommendation on modification to chest compression is based on some case reports that described effectiveness of chest compression in a patient left on a dental chair. Small simulation studies comparing the effectiveness of CPR on a dental chair and on the floor reported either lower or equivalent CPR quality. Recent simulation study verified the efficacy of a stool as a stabilizer in different types of dental chairs and confirmed feasibility of ERC guidelines 2015. Expert consensus was provided by the Resuscitation Council UK in May 2020 as a part of Quality Standards for primary dental care. (https://www.resus.org.uk/library/quality-standards-cpr/quality-standards-acute-care).

Causes of cardiac arrest

Causes of cardiac arrest usually relate to pre-existing comorbidities, complications of the procedure or allergic reactions.

Airway and breathing

Dental procedures may cause loss of airway patency related to the primary pathology or complications of the procedure (e.g. bleeding, secretions, tissue swelling). The occurrence of choking is low, with a reported incidence of 0.07–0.09 cases per dentist per year. The addition of sedation is a contributory risk in these cases, although provision of dental treatment under both local anaesthesia and sedation has an excellent safety record.

Circulation

Although life-threatening anaphylaxis is rare, it is a documented cause of death during dental procedures. In addition to chlorhexidine mouthwash, other common causes may include local anaesthetic agents and latex. True anaphylaxis occurs in only 0.004–0.013 cases per dentist per year, while coronary symptoms (angina or myocardial infarction) are reported more frequently: 0.15–0.18 cases per year.

Treatment of cardiac arrest

The patient’s mouth should be checked and all solid materials from the oral cavity (e.g. retractor, suction tube, tampons etc.) removed. Prevention of foreign body airway obstruction should precede positioning. The dental chair should be reclined into a fully horizontal position with a stool placed under the backrest for its stabilization. If reduced venous return or vasodilatation has caused loss of consciousness (e.g. vasovagal syncope, orthostatic hypotension), cardiac output might be restored with no need for CPR.

If breathing is not normal following opening of the airway, assume a cardiac arrest until proven otherwise. Chest compressions should be started immediately with the patient lying flat on the chair. Moving the patient down onto the floor should be considered once that could be achieved with the help of sufficient personnel (injury prevention), when space allows, and without delaying CPR. If access to either side of chest is limited over-head CPR should be considered.

Equipment and training

Specific resuscitation equipment, including suction, oropharyngeal airway, self-inflating bag with face masks, oxygen, emergency drug kit, should be available immediately. This equipment list should be standardised on the national level (https://www.resus.org.uk/library/quality-standards-cpr/quality-standards-acute-care). All dental practices delivering clinical care should have immediate access to an AED, with all staff trained in its use. The role of early defibrillation should be emphasized to increase availability of AEDs in dental offices, which is still unsatisfactory, ranging from a reported 1.7–2.6% in Europe, to 11% in the US.

Medical professionals working in a dental office have an obligation to provide CPR in case of cardiac arrest, and to ensure that staff are trained and updated regularly. (https://www.resus.org.uk/library/quality-standards-cpr/quality-standards-acute-care). There is a public expectation that dental practitioners and all other dental care professionals should be competent in treating cardiorespiratory arrest. However, only 0.2–0.3% dentists have a real experience, and CPR training varies significantly between countries. Maintaining knowledge and competence to deal with medical emergencies must be an important part of training of the dentists.

Special settings

Inflight cardiac arrest

According to prognosis provided before the COVID pandemic the number of passengers travelling by plane will rise to 9 billion in the year 2040 (Association International Air Transport (2016) http://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-industry-facts.pdf accessed 20 Jul 20). Although air travel is safe in general, passenger demographics, pre-existing medical conditions as well as the number of passengers aboard larger aircraft and flights over very long distances raise the probability of in-flight emergencies per flight. Between 1 out of 14,000 and 50,000 passengers will experience acute medical problems/emergencies during a flight with cardiac arrest accounting for 0.3% of all in-flight medical emergencies.

Early recognition and calling for help, early defibrillation, high-quality cardiopulmonary resuscitation (CPR) with minimal interruption of chest compressions and treatment of reversible causes, are the most important interventions. Especially in the remote environment of an aircraft, treatment of cardiac arrest requires adaption, modification, and supplementation to ensure the best possible outcome for patients.

Recommendations are based on one treatment guideline from the German society of aerospace medicine (DGLRM), a scoping review and expert consensus within the writing group.

Modifications of ALS

Chest compressions

Bystander CPR enhances the survival rate significantly and should be performed as soon as possible. If a cardiac arrest is recognised, the
cabin crew should commence resuscitation and medical professional help should be sought immediately. The easiest and most effective way is an on-board announcement. Ideally, CPR is performed by at least two people according to the universal CPR guidelines. Optimally, the rescuer should kneel in the leg-space in front of the aisle seats to perform chest compressions. A second rescuer can sit/kneel in the aisle performing ventilation or attaching the AED.492 [Charles 2011, 582] In situations where it is not possible to perform standard CPR according to the CPR guidelines, over-the-head (OTH) CPR may be considered as a suitable alternative.492

Defibrillation

Every commercial passenger aircraft should be equipped with an AED. An AED and a first-aid kit should be requested immediately from the cabin crew, since time to defibrillation is one of the most important factors for survival after cardiac arrest.492

Airway management

Adapted to the aircraft environment, the use of SGA may be superior for airway management in inflight resuscitation.493 The use of capnometry/capnography might be helpful during an inflight cardiac arrest. A (simple) qualitative capnometer should be available.493

Environment

Emergency equipment location should be clearly signposted. Brief information how to act in case of cardiac arrest should be printed on the seat pocket safety instruction card. A standardised medical documentation form must be available. Infrastructure and fast access to emergency equipment can reduce the potential delay to adequate therapeutic attempts, and substantially decrease no-flow-time. Since all passengers and crew members on-board are potential bystanders, all should know whom to contact in case of a cardiac arrest. Besides some general information in the pocket safety cards, the location of the emergency equipment should be mentioned in the pre-flight safety announcement.494 Cabin crew must be trained in CPR and AED defibrillation and should be retrained every six months.493

Diversion and post-resuscitation care

A typical scenario to perform an emergency diversion before ROSC is when leaving land and expecting a flight over open water during an ongoing CPR event. Furthermore, when near an airport, an early diversion might also be useful. However, there are reasons for avoiding a diversion as long as ROSC is not achieved. For a patient presenting with a non-shockable rhythms, available evidence suggests that the time required for diversion may be futile. An aircraft diversion also includes additional risks: emergency landings, potential need to dump fuel, landing with overweight aircraft, altered flight patterns, landing in poor weather, high costs, and landing in unfamiliar conditions all increase the operational risk. If a person is found to be life extinct or CPR has been terminated, a diversion is not recommended.493,495 If telemedicine support is available, it should be used to receive recommendations and to discuss the further course.

Helicopter emergency medical services (HEMS) and air ambulances

Air ambulance services operate either a helicopter or a fixed wing aircraft that routinely transport critically ill or injured patients directly to specialty centers. They also perform secondary transfers between hospitals. Cardiac arrest may occur during flight, both in patients being transported from an accident site (primary missions) and also in critically ill patients being transported between hospitals (secondary missions).496,497 The extent of treatment available onboard an air ambulance varies and depends on medical, technical, and personal factors, e.g., crew competences and configuration, cabin size, and equipment. Ideally, all interventions should be performed before flight to avoid the need for unplanned treatments during flight.492

This section is based on an evidence update on Cardiac arrest in HEMS and air ambulance produced by recent (randomised) clinical trials or systematic reviews and focused on scoping reviews addressing the questions:

- General recommendations for Cardiac arrest in HEMS and air ambulance (30 titles screened/28 abstracts screened/7 publications selected).
- Method of Chest compressions for Cardiac arrest in HEMS and air ambulance (28 titles screened/17 abstracts screened/4 publications selected).
- Airway management for Cardiac arrest in HEMS and air ambulance (28 titles screened/20 abstracts screened/7 publications selected).

Pre-flight evaluation

When preparing the transport of a critically ill or injured patient, ensure that all necessary equipment is functioning, easily accessible, and that all necessary drugs and technical equipment are available within an arm-length during the flight. A standardized documentation form should be available in order to check pre-flight medical status.493 Consider the patients fitness to fly. Long-haul flights lasting 12–14 h can cause a more significant adverse effect on vulnerable passangers. HEMS or aircraft cruising heights can vary between 100 and 13,000 m (300–41,000 ft) above sea level. The passenger cabin pressure is maximum equivalent to an altitude of approx. 2500 m (8000 ft).498 Arterial oxygen partial pressure (PaO2) can decrease from 95 mmHg to as low as 60 mmHg at the lowest level of cabin pressure.499

Due to high levels of stress (noise, movement etc.) and environmental alteration evaluate patient’s current health status according to following:

- Recent post-surgery of a large body cavity
- Recent or current pneumothorax
- Cerebrovascular accident
- Acute psychotic mental illness
- Neonates or prematurely born infants
- Acute Myocardial infarction or unstable angina
- Recent cardiac surgery

Diagnosis

Usually patients transported by HEMS or fixed wing airplane are monitored, so asystole and shockable rhythms (VF/pVT) can be immediately identified. However, noise levels and flight helmets usually prevent acoustic alarm recognition. Recognition of PEA may be challenging, especially under sedation or general anaesthesia. Loss of consciousness, change in the ECG pattern, and loss of the pulse oximeter signal should provoke a breathing/pulse and patient check. A sudden decrease in EtCO2 values in those being ventilated or loss of a waveform in those breathing spontaneously with ETCO2 monitoring are excellent indicators of cardiac arrest.
Modifications to ALS

When a cardiac arrest is recognised, communication within the medical and flight teams should occur immediately. In situations where it is not possible to perform standard CPR according to the CPR guidelines, over-the-head CPR may be considered as a suitable alternative. According to cabin size, chest compressions in a helicopter might not be possible. Consider installing a mechanical CPR device on the patient before flight where there is a risk of cardiac arrest. In the case of an unexpected cardiac arrest during flight, immediate landing should be considered to initiate high quality resuscitation. Use of a SGA should be considered if the patient was not ventilated previously. For VT/VF during flight consider three stacked shocks.

Cruise ship

Outcome from cardiac arrest on cruise ships is worse compared to the overall population, as access to healthcare facilities is more complicated and transfers can be prolonged. Furthermore, some environments overseas are harsher than urban oversea territories (e.g. cold, windy, wet, ice and snow). Austere and isolated environments (such as polar regions) will not provide any possibility to return rapidly to the next harbour, so autonomous management of a cardiac arrest patient might be necessary.

This section is based on an evidence update on Cardiac arrest on a cruise ship produced by recent (randomized) clinical trials or systematic reviews and focused on scoping reviews addressing the questions:

- General recommendations for Cardiac arrest on a cruise ship (16 titles screened/8 abstracts screened/6 publications selected).
- Recommendations for Post-resuscitation care for Cardiac arrest Cardiac arrest on a cruise ship (5 titles screened/5 abstracts screened/2 publications selected).

Cardiac arrest on a cruise ship

If a cardiac arrest is recognised on a cruise ship, all medical resources should be used immediately. A medical first-responder team should be available 24/7, all equipment necessary for ALS should be available onboard and readily accessible. An AED should be onboard and requested immediately, since time to defibrillation is one of the most important factors for survival after cardiac arrest. Where there are insufficient numbers of crew health care professionals, an onboard announcement should be made to call for further medical professional help. Depending on the resources available telemedicine should be used as early as possible. Qualified medical air transportation is an option to cover long distances to medical facilities.

Cardiac arrest in sport

The incidence of sudden cardiac death (SCD) associated with sport or exercise in the general population is 0.46 per 100,000 person-years. There is a wide range in the incidence of SCD in those below 35 years of age (1.0–6.4 cases per 100,000 participant-years) depending on the study parameters and the incidence is markedly higher in those susceptible to cardiac arrhythmias during or shortly after participating in sport. In a recent study involving 18.5 million athletes in competition and for running and gym exercise during non-competition. There have been many reports of high risks associated with strenuous sports such as racquet sports, downhill skiing, marathon running, triathlon participation, and high-intensity sports activities such as basketball.

It is important to recognise that the absolute risk of experiencing a cardiac event or SCD during physical exercise is small. It is estimated that the absolute risk in male athletes during vigorous exercise is 1 SCD in 1.51 million episodes. In population-based studies the incidence of SCD is reported as 0.46 per 100,000 person-years in France and 0.31 per 100,000 person-years in Japan. In a Dutch study, with a reported incidence of 2.1 per 100,000 person-years, there was a higher survival after exercise or sport related incidents than after non-exercise related incidents (42.1% compared with 17.2%). However, in the United States it has been estimated that in younger age groups there is an approximately 4.5-fold higher risk of sudden cardiac arrest (SCA) or SCD in competing athletes than non-athletes.

Recommendations in this section are based on a literature review for an evidence update, including one recent AHA scientific statement, hand searching of specific topics and expert opinions from sports medicine and pre-hospital emergency medicine practitioners.

Management

SCA during sport or exercise requires rapid recognition and effective treatment if the individual is to survive. Reports of improved survival for SCA during sport with survival rates improving from 8.0% in the general population to 22.8% in sport related events and even reaching as high as 71% in US High schools are attributed to the majority of the events being witnessed, the implementation of prompt resuscitation and the availability of a defibrillator. In marathon running it has been reported that 50% of SCDs occurred in the last mile with the highest prediction of survival being early bystander resuscitation and the use of an AED.

Therefore, there is strong evidence in favour of planning, adhering and implementing standard resuscitation procedures that include basic life support and the use of an AED in sport related cardiac events.

Prevention

Historically, cardiac screening has been the recommended strategy for the prevention of cardiac events in sport. However there remains differences between the European Society of Cardiology who recommend the use of a 12-lead ECG as a screening tool for all young athletes and the AHA/American College of Cardiology who found insufficient evidence to support this screening tool. Currently the International Olympic Committee and many International Sport Federations recommend cardiac screening for athletes.

For older participants in sports and exercise, a medical evaluation should include the individual’s current level of physical activity, their known cardiovascular, metabolic, or renal disease, the presence of the signs or symptoms suggestive of cardiovascular disease and the desired or anticipated exercise intensity.

Commotio cordis

Whereas most cardiac events in sport are not associated with contact or trauma, commotio cordis is the exception. Commotio cordis, the disruption of cardiac rhythm by a blow to the precordium, has a quoted incidence of 3%. The striking object must strike the chest within the cardiac silhouette within a 20 ms window of the upstroke of the T-wave. The overall survival rate from commotio cordis is reported to...
have improved with survival rates of up to 58% reported in recent years.536 This has been attributed to rapid recognition of the collapse, early basic life support and the availability of AEDs resulting in prompt defibrillation.

Drowning

Drowning is the third leading cause of unintentional injury death worldwide, accounting for over 360,000 deaths annually [https://www.who.int/news-room/fact-sheets/detail/drowning]. Care of a submersion victim in high-resource countries often involves a multiagency approach, with several different organizations being independently responsible for different phases of the patient’s care, beginning with the initial aquatic rescue, through on-scene resuscitation and transfer to hospital and in-hospital and rehabilitative care. Attempting to rescue a submerged patient with substantial resource implications and may place rescuers at risk themselves. The major sequela of drowning is hypoxia caused by respiratory impairment secondary to the aspiration of fluid into the lungs. If severe or prolonged, this can cause cardiac arrest. Early effective intervention is critical to improve survival and reduce morbidity.

Recommendations in this section follow the updated 2020 ILCOR systematic review and ILCOR scoping review.3,14

Initial rescue

The updated 2020 ILCOR systematic review explored the influence of key prognostic factors on the likelihood of search and rescue operations yielding favourable outcomes. The review found moderate certainty evidence that submersion duration was the strongest predictor of outcome and recommended its use when making decisions surrounding search and rescue resource management/operations.14 The CoSTR suggested against the use of age, EMS response time, water type (fresh or salt), water temperature, and witness status when making prognostic decisions (very low certainty evidence). Feedback during the public consultation on the guidelines highlighted a potential role for drones to reduce submersion duration or provide flotation aids.531–533

Cardiac arrest prevention

Insights from a scoping review identified limited evidence from observational studies and manikin studies to inform the treatment of the drowning victim.9 A summary of the key findings of the review is presented in Table 8. The ERC recommendations for the treatment of drowning are therefore based on expert consensus from the writing group, informed by evidence from the scoping review.

Cardiac arrest

Similar to the cardiac arrest prevention section, limited evidence to inform practice guidelines was identified during the scoping review.9 Key findings are summarised in Table 9. The ERC recommendations for the treatment of cardiac arrest related to drowning are therefore based on expert consensus from the writing group, informed by evidence from the scoping review. Given that the duration of submersion and duration of cardiac arrest are key prognostic indicators, initiating resuscitation as early as it is safe and practical to do so is strongly supported by the writing group.

Mass casualty incidents

Mass casualty incidents (MCIs), characterized by greater demand for medical care than available resources, are rare events. Among the 19.8 million yearly EMS activations in the United States, only 0.3% had an MCI dispatch code of which less than a half were confirmed on scene.535 The MCI can be caused by variety of chemical, biological, radiological or nuclear (CBRN) incidents, but traumatic incidents (e.g. traffic accidents, acts of crime, or natural and industrial disasters) play a leading role in developed countries.536 Key themes were identified recently to improve future practice of prehospital providers: tactical emergency medical support may harmonise inner cordon interventions, a need for inter-service education on effective haemorrhage control (trauma specific), the value of senior triage operators and the need for regular mass casualty incident simulation.537

A PubMed scoping review was performed on March 2720, 2020 using the keywords “mass-casualty incident” AND “cardiac arrest or heart arrest” OR “resuscitation or cardiopulmonary resuscitation” in the last 5 years (n=47). There were no systematic reviews and RCTs identified on this topic related to CPR. There are few RCTs exploring different educational and managerial strategies during MCIs including use of modern technologies, e.g. unmanned aerial vehicle (UAV) or Smart Glasses providing telemedical connection from the scene.538 Available resources did not provide any evidence for change of resuscitation practice when compared to the ERC guidelines 2015.84

Modifications to CPR during pandemics of highly contagious infectious disease have been addressed in the separately published ERC COVID-19 guidelines (April 2020).539 Although pandemics did not fulfil MCI definition ‘per se’, some healthcare systems were facing shortages of personnel and equipment limiting capacity of critical care. Decisions on allocation of resources, including provision of CPR, during pandemics had to be made locally on the level of individual healthcare systems. However, the COVID-19 guidelines have emphasised importance of generally applicable safety precautions.

Safety

Potential hazards should be identified and assistance should be requested immediately. The presence of multiple victims should always alert rescuers to the possibility of a CBRN incident. Never approach the victims unless the area is safe. High risks are present at crime scenes (e.g. shootings, bomb attacks), or places polluted by noxious substances (e.g. carbon monoxide, industrial cyanides or other chemicals).

Adequate personal protection equipment (PPE) (e.g. bulletproof vest, respirator, long-sleeved gown, eye and face protection) should be used depending on specific risks on scene. Healthcare providers are required to don (put-on) PPE before approaching casualties even if time-critical interventions are required. It is acknowledged that this could cause delay to treatment.539 Wearing PPE may also adversely affect performance of interventions and limit the standards of care. Simulation studies have shown reduced success rate of advanced airway techniques, prolonged time for securing IV and intraosseous access, and difficulties with drug preparation.540–542

Secondary risks to patients and providers should be avoided. During sarin attacks in Japan, 10% of 1363 EMS technicians developed poisoning, mostly from primary victims in poorly ventilated ambulances.543

Triage

Initial triage of casualties enables identification of patient care priorities. Unlike normal circumstances, CPR is not usually initiated in MCI, in order to avoid delay potentially effective treatment for salvageable victims. This critical decision depends on available resources in relation to the number of casualties.
Table 8 – Cardiac arrest prevention in drowning.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Evidence identified</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen administration</td>
<td>No studies identified which directly addressed this question. 4 observational studies, indirectly address this question.</td>
<td>Insufficient evidence to guide the pre-hospital use of oxygen therapy in drowning. Pragmatically, consider treating the hypoxic patient with high flow oxygen prior to arrival in hospital where direct measurement of arterial oxygenation can be performed to enable controlled oxygen therapy. Further research to guide on the optimal mode for delivery and optimising pre-hospital monitoring is required.</td>
</tr>
<tr>
<td>Airway management</td>
<td>No studies identified which directly addressed this question. Indirect evidence from 15 observational studies.</td>
<td>The studies reviewed show that intubation is a feasible intervention following a submersion incident. The association between intubation and poor outcomes is almost certainly confounded by the need for intubation being an intervention limited to more severe drowning. In the absence of data supporting an alternative strategy, adoption of the ALS Task Force recommendations for airway management is reasonable.</td>
</tr>
<tr>
<td>Ventilation strategies</td>
<td>4 observational studies</td>
<td>NIV appears feasible as a treatment for moderate to severe lung injury caused by drowning. The published experience involves mostly patients with higher GCS, who are haemodynamically stable. Patients appear to respond within 12–24 h. The indications for the optimal time to transition to invasive ventilation if NIV is unsuccessful requires further research. Given the absence of direct evidence for any particular invasive ventilation strategy in drowning, the writing group advocates the adoption of evidence based strategies for the management of acute respiratory distress syndrome.</td>
</tr>
<tr>
<td>ECMO</td>
<td>13 observational studies</td>
<td>The evidence identified for severe respiratory failure, is consistent with guidelines suggesting the use of ECMO in selected patients with severe ARDS (weak recommendation, very low certainty of evidence).</td>
</tr>
</tbody>
</table>

Locally established triage systems to prioritise treatment should be used. There is not sufficient evidence to declare one of the triage protocols superior in all aspects to the others. Advanced prehospital teams involved in the initial scene triage must avoid over triage. Repeated triage (re-triage) is needed at hospital admission and responsible personnel at all stages of emergency care must be familiar with the triage system used.

Life-saving interventions should be performed in patients triaged as “immediate” (highest priority) to prevent cardiac arrest. Open airway using basic techniques, control bleeding, decompress chest for tension pneumothorax, use antidotes in auto-injectors, consider initial rescue breaths in a non-breathing child.

Assigning a higher triage risk level to elderly and to survivors of high-energy trauma should be considered to reduce the number of preventable deaths. In the National Trauma Database (NTDB), patients in all triage levels were compared to mortality outcomes. There were 322,162 subjects assigned to the ‘green’ triage level of which 2046 died before hospital discharge. Age was the primary predictor of under triage.

In children, special triage tapes or a paediatric-specific MCI triage system (e.g. JumpSTART) should be used. If this is not available, any adult triage system can be used.

Decision to use an MCI triage sieve and withhold care to those with imminent death, (including victims without signs of life), is responsibility of a medical commander who is usually the most experienced EMS clinician on scene. Individual role allocations usually depend on local protocols. Modern technologies (e.g. UAVs or Smart Glasses) allow real-time video transmission from the triage site to the remote incident commanders or personnel at receiving hospitals. Triage inaccuracy may have fatal consequences in patients with survivable injuries. Healthcare professionals must be regularly trained to use the triage protocols during simulations and live exercises. Educational video games enhance learning and improve subsequent performance when compared to traditional educational methods. Training allows fast and correct recognition of those requesting lifesaving procedures and reduces the risk of inappropriate care given to futile cases.

Special patients

Asthma and COPD

Evidence based recommendations for the management of acute life threatening asthma are provided by the British Thoracic Society, Scottish Intercollegiate Guidelines Network (Fig. 13) [https://www.sign.ac.uk/sign-158-british-guideline-on-the-management-of-asthma.html] and for chronic obstructive lung disease by the Global initiative for chronic obstructive lung disease (GOLD) (https://goldcopd.org/). The guidelines were assessed according to the AGREE-II framework and rated as high quality and consequently recommend the use of this guideline in practice.

The BTS/SIGN and GOLD guidelines do not contain specific information on the management of cardiac arrest. Our review did not identify any other relevant, high quality guidelines. Therefore, we undertook a scoping review and formed our guidelines based on expert consensus amongst the writing group.

The scoping review identified 352 papers of which 19 were relevant. No RCTs were identified. Evidence is therefore drawn from these observational studies, supplemented by studies identified in the 2015 guidelines. The recommendations are based on the expert consensus of the writing group.

Cardiac arrest prevention

A stepwise approach to the initial assessment and treatment, based on the ABCDE approach is recommended for patients at risk of cardiac arrest due to an exacerbation of obstructive lung disease (asthma/COPD).
Further steps in the treatment of acute severe asthma are summarized in Fig. 13.

For COPD, the GOLD guidelines recommend that supplemental oxygen is titrated to achieve a target saturation of 88–92%, with frequent monitoring of blood gases to ensure adequate oxygenation without carbon dioxide retention. Pharmacological therapy comprises short acting beta-2 agonists with or without short-acting anticholinergics, systemic corticosteroids and antibiotics if a bacterial infection is suspected. Non-invasive ventilation (NIV) is recommended in the presence of respiratory acidosis (PaCO$_2$ < 6 kPa/35 mmHg and arterial pH < 7.35); severe dyspnoea with clinical signs of fatigue and/or increased work of breathing. Escalation to invasive ventilation may be required in the event of NIV failure, the patient is intolerant to NIV, agitation or reduced conscious level, risk of aspiration, cardiovascular instability or life-threatening hypoxia. Be alert to the higher risk of life-threatening hypotension after emergency intubation and mechanical ventilation in patients with raised arterial CO$_2$ and obstructive lung disease.552

Table 9 - Cardiac arrest management in drowning.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Evidence identified</th>
<th>Key findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-water resuscitation</td>
<td>1 observational study and 4 manikin studies</td>
<td>In-water resuscitation by highly trained rescue teams with water rescue equipment is feasible. If trained and capable rescue teams are available, initiate in-water resuscitation for the unconscious and not-breathing patient by performing up to 1 min of ventilations (=10 ventilations) before attempting transfer to land. If breathing is not restored, patient should be towed to the shore/boat without more attempts of ventilations during water rescue. Outside of the setting of a highly trained rescue team, who are familiar with in-water resuscitation, transfer directly to land/boat before initiating resuscitation. One rescuer, although well trained in in-water resuscitation, without rescue equipment should also bring the patient directly to the shore.</td>
</tr>
<tr>
<td>CPR on a boat</td>
<td>2 observational studies and 4 manikin studies</td>
<td>Resuscitation in a boat seems feasible. Those providing resuscitation should focus on high quality CPR and be alert to the development of fatigue and consider switching CPR provider regularly.</td>
</tr>
<tr>
<td>Bystander CPR</td>
<td>18 observational studies</td>
<td>Bystander CPR in drowning is feasible and appears effective. The apparent superiority of conventional CPR which includes ventilation, has biological plausibility as cardiac arrest association with drowning is primarily due to hypoxia. The findings of this review are consistent with the ILCOR CoSTR which recommends that chest compressions be performed for all patients in cardiac arrest. ILCOR suggests that those who are trained, able and willing to give rescue breaths as well as chest compressions do so for all adult patients in cardiac arrest.</td>
</tr>
<tr>
<td>AED use</td>
<td>No studies identified which directly addressed this question. Indirect evidence from 15 observational studies.</td>
<td>AED use in cardiac arrest due to drowning appears feasible and safe. The chances of a shockable rhythm is lower than for a primary cardiac cause. Given this, the writing group considered initiating rescue breaths and chest compressions should be prioritised. This is consistent with the ILCOR treatment recommendation which advises a short period of CPR while the defibrillator is prepared for analysis, which is likely to be particularly important where the cardiac arrest was caused by drowning.</td>
</tr>
<tr>
<td>Airway management</td>
<td>No studies identified which directly addressed this question. Indirect evidence from 15 observational studies.</td>
<td>In the absence of data supporting an alternative strategy, adoption of the ALS Task Force recommendations for airway management is reasonable. Start with basic airway techniques and progress stepwise according to the skills of the rescuer until effective ventilation is achieved. If an advanced airway is required, only rescuers with a high tracheal intubation success rate should use tracheal intubation.</td>
</tr>
<tr>
<td>ECPR</td>
<td>13 observational studies</td>
<td>Extracorporeal oxygenation to treat cardiac arrest or severe respiratory failure caused by drowning is feasible. The evidence identified supports the ILCOR treatment recommendation that suggests “extracorporeal cardiopulmonary resuscitation (ECPR) may be considered as a rescue therapy for selected patients with cardiac arrest when conventional cardiopulmonary resuscitation is failing in settings where this can be implemented” (weak recommendation, very-low certainty of evidence).</td>
</tr>
</tbody>
</table>

Treatment of cardiac arrest caused by obstructive lung disease

Cardiac arrest in patients with obstructive lung disease may arise as a consequence of hypoxia, hypovolaemia, toxins (arrhythmias caused by stimulant drugs e.g. beta-adrenergic agonists, aminophylline), electrolyte disturbance, tension pneumothorax and/or the effects of gas trapping leading to reducing venous return and blood pressure.553–557 Cardiac arrest in obstructive lung disease is usually associated with a non-shockable rhythm and therefore poor survival rates.558,559

Airway

Oxygen: Although no definitive studies were found which examined the role of oxygen versus any other gas in cardiac arrest due to obstructive lung disease, the writing group considered hypoxia, as the main cause of cardiac arrest, a high priority and recommend high concentration oxygen when providing assisted ventilation.
Advanced airway management: An observational study involving 12 patients recorded peak airway pressures in acute severe asthma (mean 67.8 ± 11 cm H₂O) which are significantly higher than the normal lower oesophageal sphincter pressure.ª50 There is a significant risk of gastric inflation and hyperventilation of the lungs when attempting to ventilate a severe asthmatic without a tracheal tube. During cardiac arrest this risk is even higher, because the lower oesophageal sphincter pressure is substantially lower than normal. The writing groups therefore suggest that the trachea is intubated as soon as possible during cardiac arrest caused by asthma. Consistent with the ALS airway management guidelines, intubation should only be performed by someone who is trained and competent to do so.ª1³

Breathing
Check for signs of tension pneumothorax and treat accordingly: Patients with obstructive lung disease may develop tension pneumothorax, which, if left untreated, may cause cardiac arrest.ª51 -ª56 Check for signs of tension pneumothorax and treat accordingly, noting that needle decompression alone may be insufficient to relieve a tension pneumothorax.ª51,ª56,ª66

Disconnect from positive pressure ventilation if air-trapping and hyperinflation occurs and apply pressure to manually reduce the hyperinflation: Some case reports have reported ROSC in patients with air trapping when the tracheal tube was disconnected.ª67 -ª73 If dynamic hyperinflation of the lungs is suspected during CPR, compression of the chest while disconnecting the tracheal tube may relieve air trapping.ª57,ª57ª6 Although this procedure is supported by limited evidence, it is unlikely to be harmful in an otherwise desperate situation.ª57,ª57ª9

Ventilate with respiratory rate (8–10min) and sufficient tidal volume to cause the chest to rise. Respiratory rates of 8–10 breaths per minute and a tidal volume required for a normal chest rise during CPR should minimize dynamic hyperinflation of the lungs (air trapping).ª57ª6 Tidal volume depends on inspiratory time and inspiratory flow. Lung emptying depends on expiratory time and expiratory flow. In mechanically ventilated severe asthmatics, increasing the expiratory time (achieved by reducing the respiratory rate) provides only moderate gains in terms of reduced gas trapping when a minute volume of less than 10l min⁻¹ is used.ª58

Circulation
Consider IV fluids: No studies evaluating the use of IV fluids for cardiac arrest due to obstructive lung disease were identified. Expert consensus from the writing group suggests that IV fluids should be considered due to the risk of patients with obstructive lung disease becoming dehydrated due to reduced oral intake and/or increased insensible losses.

Consider standard dose IV adrenaline: In alignment with the ILCOR CoSTR on vasopressors in cardiac arrest, the ALS guidelines recommend that 1 mg adrenaline is given every 3–5 min during cardiac arrest based on moderate quality evidence.ª2,ª1³ The main trial informing these recommendations however excluded patients with asthma.ª7ª7 Some small observational studies, predominantly in younger patients suggest it may be administered in life threatening asthma without adverse sequelae.ª57,ª57ª9

Consider ECPP: ECMO has been used successfully in patients with life threatening asthma.ª58,ª58ª1 Consistent with ALS guidelines E-CPR may be considered if conventional therapies fail and the health system has immediate access to this treatment.ª2

Neurological disease
Cardiac arrest associated with acute neurological disease is relatively uncommon and can occur with subarachnoid haemorrhage, intracerebral haemorrhage, epileptic seizures, and ischaemic stroke.ª58º In a US post mortem study of 335 sudden cardiac deaths, 18 (5.4%) were sudden neurological deaths (intracranial haemorrhage, sudden unexpected death in epilepsy, aneurysmal subarachnoid haemorrhage, acute stroke, aspiration from Huntington Disease).ª54ª2 These deaths made up 14.9% of the 121 non-cardiac deaths in the study.

The evidence supporting this guideline is based on observational data and expert opinion, and guidelines for the care of common neurological conditions that may cause cardiac arrest. A focused literature search was carried out up to 10 August 2020 and identified observational 9 studies and a Cochrane review since the since the 2015 guideline.ª3³

Prodromal signs
Certain features such as a younger age, female gender, non-shockable initial rhythm and neurological antecedents (e.g. headache, seizures, neurological deficits) suggest a neurological cause of cardiac arrest.ª5ª4 Other non-specific signs include syncope, shortness of breath and chest pain.ª5ª5

Early brain imaging
Identifying a neurological cause of cardiac arrest after ROSC is part of the ERC post resuscitation care guideline.ª2³ The expert opinion based on observational data is that early identification of a neurological cause can be achieved by performing a brain CT-scan at hospital admission, before or after coronary angiography. In the absence of signs or symptoms suggesting a neurological cause (e.g. headache, seizures or neurological deficits) or if there is clinical or ECG evidence of myocardial ischaemia, coronary angiography is undertaken first, followed by CT scan in the absence of causative lesions on coronary angiography. A systematic review of the diagnostic yield of non-invasive imaging in patients following non-traumatic OHCA identified 9 observational studies of brain imaging.ª5ª6 The most common diagnoses were brain haemorrhage (16.9%, including intraparenchymal, intracranial or extra-axial haemorrhage) and acute stroke (11.8%). The indication for the scans was not entirely clear so the true rate of identifying neurological causes is uncertain.

Subarachnoid haemorrhage
Cardiac or respiratory arrest occurs in between 3–11% of patients with subarachnoid haemorrhage (SAH).ª5ª7 There is considerable regional variation in the incidence of SAH as a cause of cardiac arrest among those with sustained ROSC at hospital admission. Published case series report 16.2% in Japan,ª5ª8 11.4% in Koreaª5ª9 and 7% in France.ª5ª0 In a Japanese study of patients with ROSC, SAH was most often associated with an initial non-shockable rhythm (95.7%), a prodromal headache before cardiac arrest (47.8%), and a negative cardiac troponin-T (94.7%).ª5ª0 Patients with SAH may have ECG changes that suggest an acute coronary syndrome.ª5ª6,ª5ª9,ª6ª3

This can pose challenges after ROSC in terms of whether they should have an early brain scan or go directly for coronary angiography. The order of brain scanning versus early coronary angiography should be based on clinical suspicion (See Section X Post resuscitation care).ª2³ Prognosis is poor even in those with ROSC after a SAH.ª5ª6,ª5ª9,ª6ª2 This is probably because cardiac arrest tends to occur with larger more severe bleeds following a SAH.ª5ª6

Sudden unexpected death in epilepsy
Sudden unexpected death in epilepsy (SUDEP) effects about 1 in every 100 people with epilepsy. Data from the North American SUDEP registry showed cases of SUDEP had a median age of 26 years at death, 38% were female, 40% had generalized and 60% had focal epilepsy, most (93%) were un witnessed, 70% occurred during apparent sleep, 69% of patients were prone, and only 37% of cases of SUDEP took their last dose of antiseizure medications. A Cochrane review found very low certainty evidence for interventions to prevent SUDEP addition to improving seizure control such as having a supervising person share a bedroom and use of monitoring devices.

Stroke
Data from the Ontario stroke registry found that 3.9% of acute ischaemic stroke patients also had a cardiac arrest. The risk of arrest was increased in older patients with increased stroke severity, diabetes, myocardial infarction, heart failure and atrial fibrillation. Mortality at 30 days was 82.1% in cardiac arrest stroke patients versus 9.3% in non-cardiac arrest stroke patients. Data from the all Japan Utstein registry reported that 7.7% of OHCA cases had a stroke related cardiac arrest. This group had worse outcomes that patients who had a primary cardiac arrest.

Outcomes
Survival from sudden neurological death depends on the underlying cause and the Chain of survival (i.e., witnessed, early bystander CPR, ALS, and post resuscitation care). Survival is generally worse than for primary cardiac arrest. Individuals who achieve ROSC after a primary neurological cause of cardiac arrest may not recover and have withdrawal of life sustaining treatments, or fulfill the criteria for death by neurological criteria. These patients should be considered for organ donation according to local legal and clinical criteria [see section X post-resuscitation care].

Obesity
Overweight and obesity are defined as abnormal or excessive fat accumulation that presents a risk to health. A crude population measure of obesity is the body mass index (BMI), a person’s weight (in kg) divided by the square of his or her height (in metres). A person with a BMI of 30 kg m⁻² or more is generally considered obese. In 2016, more than 1.9 billion (39%) adults were overweight, and of these over 600 million (13%) were obese. In the United States, the age-adjusted prevalence of obesity in 2013–2014 was 35.0% among men and 40.4% among women.

Clinical and epidemiological evidence has linked obesity to a broad spectrum of cardiovascular diseases including coronary heart disease, heart failure, hypertension, stroke, atrial fibrillation and sudden cardiac death. Obesity can increase cardiovascular morbidity and mortality directly and indirectly. Direct effects are mediated by obesity-induced structural and functional adaptations of the cardiovascular system to accommodate excess body weight, as well as by adipokine effects on inflammation and vascular homeostasis. Indirect effects are mediated by co-existing risk factors such as insulin resistance, hyperglycaemia, hypertension and dyslipidaemia.

A scoping review using the PubMed search engine was performed on March 27th, 2020 using the keywords “obesity” AND “cardiac arrest or heart arrest” OR “resuscitation or cardiopulmonary resuscitation” in the last 5 years (n = 122). There were two meta-analysis published on association between BMI and outcome after cardiac arrest. Modification to chest compressions is based on 1 retrospective study evaluating chest compression depth in obese patients using computed tomography (CT).

Treatment of cardiac arrest
No changes to the sequence of actions are recommended in resuscitation of obese patients, but delivery of effective CPR may be challenging. Physical and physiological factors related to obesity may adversely affect the delivery of CPR, including patient access and transportation, patient assessment, difficult IV access, airway management, quality of chest compressions, the efficacy of vasoactive drugs, and the efficacy of defibrillation because none of these measures are standardized to a patient’s BMI or weight.

Chest compressions
Healthcare providers should consider deeper chest compression in obese patients with a maximum depth of 6 cm using a feedback device, if available. Obese patients lying in a bed do not necessarily need to be moved onto the floor. Their heavy torso sinks into the mattress and leaves less potential for mattress displacement during chest compression. Repositioning of obese patients may delay initiation of CPR, but also cause injuries to the patient and rescuers. Reciprocating chest compressions should be changed more frequent compared to the standard two-minute interval to maintain sufficient compression depth (6 cm).

The use of mechanical chest compression devices might be considered although body dimensions and shape of the anterior chest wall limit usability of most devices in obesity permagna patients. The upper limits include sternum height of 303 or 340 mm and chest width of 449 or 480 mm for piston devices; chest circumference of 130 cm, chest width of 380 mm and body weight of 136 kg for devices equipped with a load-distributing band.

Defibrillation
Defibrillation protocols for obese patients should follow those recommended for patients with a normal BMI with escalation of energies up to the maximum feasible for subsequent shocks if initial defibrillation attempts fail (expert opinion). Optimal defibrillation energy levels in obese patients are unknown. Modern biphasic defibrillators adjust their output according to the patient’s impedance. Two small retrospective studies have demonstrated no apparent weight-based influence on defibrillation efficacy with a biphasic waveform of 150 J achieving high shock success rates without need for energy escalation. An RCT evaluating cardioversion of atrial fibrillation in obese patients however reported lower success rate when using adhesive pads with standard energies. Use of paddles or manual pressure augmentation technique further improved success of the electrical therapy.

Airway management and ventilation
Manual ventilation, using a bag-mask technique, should be performed by experienced staff using a two-person technique. The increased in abdominal size of obese individuals raises intra-abdominal pressure and repositions the diaphragm in cranial direction. This requires higher inspiratory pressures for controlled ventilation increasing the risk of gastric insufflation and aspiration of gastric contents.

Experienced providers should intubate the trachea early so that the period of bag-mask ventilation is kept to a minimum. In all patients with morbid obesity, difficult intubation must be anticipated. If intubation is not possible, use of a supraglottic airway device (SGA)...
with sufficient pressure seal and oesophageal drainage tube should be considered as suitable option.617,618

Logistical considerations

Obesity must be considered when organizing pre-hospital resuscitation, especially concerning technical support and number of EMS staff.619 Special vehicles modified to transport extremely obese patients, equipped with reinforced stretchers and specialized lifting gear, should be used if possible. Weight limits of both stretchers and hospital beds must be known prior to use.620 Underestimation of the technical aspects of rescue operations may cause secondary trauma, or even make transportation to the hospital impossible.613

Cardiac arrest in pregnancy

Maternal mortality remains high with an estimated 295,000 deaths in 2017, the majority (94%) occurring in low and lower middle income countries. (WHO – https://www.who.int/news-room/fact-sheets/detail/maternal-mortality accessed 20 July 2020) A maternal cardiac arrest is a cardiac arrest that occurs at any stage in pregnancy and up to 6 weeks after birth. In a UK study the incidence of cardiac arrest was 1 in 36,000 maternities.621 This section focuses on specific additional interventions for resuscitation during pregnancy and delivery.

This guideline has been informed by an ILCOR Evidence Update.2 The majority of the guidance is unchanged from the ERC 2015 Special Circumstances.621 In addition, this guidance has been informed by guidelines from the AHA,622 UK Royal College of Obstetricians and Gynaecologists,623 European Society of Cardiology Guidelines for management of cardiovascular disease during pregnancy,624 Most guidance is based on expert opinion, our knowledge of the physiology of pregnancy, and observational data.

Causes of cardiac arrest associated with pregnancy

In 2015–17, 9.2 women per 100,000 died during pregnancy or up to six weeks after childbirth or the end of pregnancy.625 The most common causes were heart disease (23%), thromboembolism (16%), epilepsy and stroke (13%), sepsis (10%), mental health conditions (10%), bleeding (8%), cancer (4%) and pre-eclampsia (2%). The risk increased with age, social deprivation and for ethnic minorities. A study of cardiac arrests in pregnancy between 2011 and 2014 identified 66 cardiac arrests of whom 28 died (42%).621 Of these about 25% (16) of arrest were associated with anaesthesia (12 were obese) and all survived. Survival was poor for OHCA and if there was a delay in perimortem caesarean section. Most babies (46) survived, 32 to woman who survived and 14 to those that died.

Prevention and treatment of cardiac arrest in the pregnant patient

This should follow the standard ABCDE format identifying and treating problems as they are identified. Involving specialists in the care of the sick obstetric patient and neonate early is important in order to deliver specialist interventions. Expert consensus is that the use of validated obstetric specific early warning scores improve earlier recognition of deterioration and enable risk stratification of ill pregnant patients.620,623

Aortocaval compression

After 20 weeks’ gestation, the pregnant woman’s uterus can press down against the inferior vena cava and the aorta and reduces venous return and cardiac output by 3–40%.626 This can cause pre-arrest hypotension or shock and, in the critically ill patient, may precipitate arrest.627,628 After cardiac arrest, the compromise in venous return and cardiac output may limit the effectiveness of chest compressions. Manual left uterine displacement is the easiest way to reduce aortocaval compression and may be more effective than left lateral tilt.529,630 This can be achieved by lifting the uterus up and leftward off the aortocaval vessels.620 This maintains a supine position, allowing for continuous effective cardiac compressions if necessary.

Non-arrest studies show that left lateral tilt improves maternal blood pressure, cardiac output and stroke volume and improves fetal oxygenation and heart rate.631–633 Non-cardiac arrest data show that the gravid uterus can be shifted away from the cava in most cases by placing the patient in 15 degrees of left lateral decubitus position.634

Unless the pregnant patient is on a tilting operating table, left lateral tilt is not easy to perform whilst maintaining high-quality chest compressions. A variety of methods to achieve a left lateral tilt have been described including placing the victim on the rescuer’s knees. In a manikin study, the ability to provide effective chest compressions decreased as the angle of left lateral tilt increased and that at an angle of greater than 30° the manikin tended to roll.635

Chest compressions

Chest compressions should be according to BLS guidelines at a rate of 100–120 min-1 and depth of 5–6cm on the lower half of the sternum.6 The evidence for optimal hand position is conflicting. An MRI study showed no change in heart position636 whereas a recent echocardiographic study suggested the enlarged uterus can push the diaphragm and heart upwards.637 The current guideline based on expert opinion is to use the standard manual chest compression technique if feasible. The use of mechanical chest compression devices is not recommended in pregnancy.

Peri-mortem delivery of the fetus

Consider the need for an emergency hysterotomy or caesarean section as soon as a pregnant woman goes into cardiac arrest. In some circumstances immediate resuscitation attempts will restore a perfusing rhythm; in early pregnancy this may enable the pregnancy to proceed to term. Delivery will relieve aortocaval compression and may improve chances of maternal and fetal resuscitation.638 The majority of evidence for early delivery comes from case reports and small observational studies.64,639 A UK study of cardiac arrests in pregnancy between 2011 and 2014 identified 66 cardiac arrests of whom 49 (74%) had a perimortem caesarean section (PMCS).621 In 61% this was within 5 min of collapse. The time from collapse to delivery in survivors was 7 min [interquartile range (IQR) 2.5–17.5] and 16 min (IQR 6.5–43.5) in non-survivors (P = 0.04). When PMCS was formed within 5 min 24 of 25 babies survived (96%). Seven of 10 babies (70%) survived when PMCS occurred after more than 5 min (P = 0.06).

Based on the available evidence and expert consensus the ERC guidelines remain unchanged – If over 20 weeks pregnant or the uterus is palpable above the level of the umbilicus and immediate (within 4 min) resuscitation is unsuccessful, deliver the fetus by emergency caesarean section aiming for delivery within 5 min of collapse. This requires that PMCS decision making occurs early and ideally takes place at the location of the cardiac arrest.

Extracorporeal life support

Starting ECLS before cardiac arrest or ECPR when traditional ALS measures are failing should be considered in pregnant patients in those settings where it is available. A retrospective analysis of
peripartum patients who needed extracorporeal membrane oxygenation between 1997 and 2017 in the International Registry of Extracorporeal Life Support Organization identified 280 patients. Overall survival was 70% that improved over the data collection period. Survival was better if ECLS was started prior to cardiac arrest. Forty-two patients had ECPR and 19/42 (45.2%) died in hospital.

Other modifications to advanced life support

Defibrillation
For cardiac arrest with a shockable rhythm attempt defibrillation as soon as possible. There is no change in transthoracic impedance for cardiac arrest with a shockable rhythm attempt defibrillation should be used in pregnant patients. There is no evidence that shocks have adverse effects on the fetal heart. Left lateral tilt and large breasts will make it difficult to place an apical defibrillator pad.

Airway management
Pregnant patients have an increased risk of gastric regurgitation and aspiration, and have an increased risk of failed intubation. The airway should be managed according to current ALS guidelines using a stepwise approach (bag-mask, supraglottic airway, tracheal tube, according to rescuer skills. Early intubation will make oxygenation and ventilation easier and protect against aspiration but this requires an expert intubator and be carried out according to current obstetric guidelines.

Reversible causes
Rescuers should attempt to identify common and reversible causes of cardiac arrest in pregnancy during resuscitation attempts. The 4 Hs and 4Ts approach helps identify all the common causes of cardiac arrest in pregnancy. Pregnant patients are at risk of all the other causes of cardiac arrest for their age group (e.g., anaphylaxis, drug overdose, trauma). Consider the use of abdominal ultrasound by a skilled operator to detect pregnancy and possible causes during cardiac arrest in pregnancy; however, do not delay other treatments and minimise interruptions to chest compressions.

Haemorrhage
Life-threatening haemorrhage can occur both antenatally and postnatally. Associations include ectopic pregnancy, placental abruption, placenta praevia, placenta accreta, and uterine rupture. A massive haemorrhage protocol must be available in all units and should be updated and rehearsed regularly in conjunction with the blood bank. Women at high risk of bleeding should be delivered in centres with facilities for blood transfusion, intensive care and other interventions, and plans should be made in advance for their management. Treatment is based on an ABCDE approach. Follow existing guidelines for management of massive haemorrhage obstetrics. A large RCT showed that 1 g IV tranexamic acid reduced death from postpartum haemorrhage, especially if given within 3 h.

Cardiovascular disease
Myocardial infarction and aneurysm or dissection of the aorta or its branches, and peripartum cardiomyopathy cause most deaths from acquired cardiac disease. Patients with known cardiac disease need to be managed in a specialist unit. Pregnant women may develop an acute coronary syndrome, typically in association with risk factors such as obesity, older age, higher parity, smoking, diabetes, pre-existing hypertension and a family history of ischaemic heart disease. Pregnant patients can have atypical features such as epigastric pain and vomiting. Percutaneous coronary intervention (PCI) is the reperfusion strategy of choice for ST-elevation myocardial infarction in pregnancy. Thrombolysis should be considered if urgent PCI is unavailable. A review of 200 cases of thrombolysis for massive pulmonary embolism in pregnancy reported a maternal death rate of 1% and concluded that thrombolytic therapy is reasonably safe in pregnancy.

Pre-eclampsia and eclampsia
Eclampsia is defined as the development of convulsions and/or unexplained coma during pregnancy or postpartum in patients with signs and symptoms of pre-eclampsia. The ERC recommends that existing guidance for pre-eclampsia and eclampsia is followed (e.g. Hypertension in pregnancy: diagnosis and management NICE guideline Published: 25 June 2019).

Amniotic fluid embolism
Amniotic fluid embolism (AFE) usually presents around the time of delivery with sudden cardiovascular collapse, breathlessness, cyanosis, arrhythmias, hypotension and haemorrhage associated with disseminated intravascular coagulopathy. Patients may have warning signs preceding collapse including breathlessness, chest pain, feeling cold, light-headedness, distress, panic, a feeling of pins and needles in the fingers, nausea, and vomiting. The UK Obstetric Surveillance System (UKOSS identified 120 cases of AFE between 2005 and 2014 with a total and fatal incidence estimated as 1.7 and 0.3 per 100 000, respectively, and association with older maternal age, multiple pregnancy, placenta praevia and induction of labour, instrumental vaginal and caesarean delivery. Treatment is supportive, as there is no specific therapy based on an ABCDE approach and correction of coagulopathy.

Post resuscitation care
Post resuscitation care should follow standard guidelines. Targeted temperature management has been used safely and effectively in early pregnancy with fetal heart monitoring and resulted in favourable maternal and fetal outcome after a term delivery.

Preparation for cardiac arrest in pregnancy
Advanced life support in pregnancy requires coordination of maternal resuscitation, Caesarean delivery of the fetus and newborn resuscitation ideally within 5 min. The evidence supporting this is largely based on observational data to achieve this, units likely to deal with cardiac arrest in pregnancy should:

- have plans and equipment in place for resuscitation of both the pregnant woman and newborn.
- ensure early involvement of obstetric, anaesthetic, critical care and neonatal teams.
- ensure regular training in obstetric emergencies.

The evidence to support this is largely based on expert opinion and observational data.

Conflict of interest
JN reports funding from Elsevier for his role as Editor in Chief of the journals Resuscitation and Resuscitation Plus. He reports research...
funding from the National Institute for Health Research in relation to the PARAMEDIC2 trial and the AIRWAYS2 trial.

JS declares his role as an editor of Resuscitation; he declares institutional research funding for the Audit-7 project.

JH reports travel funding from Behring and Ambu

GDP reports funding from Elsevier for his role as an editor of the journal Resuscitation. He reports research funding from the National Institute for Health Research in relation to the PARAMEDIC2 trial.

JY declares research grants from National Institute for Health Research and Resuscitation Council UK.

KT reports Federal research funding for drone AED research.

Acknowledgements

GDP is supported by the National Institute for Health Research (NIHR) Applied Research Collaboration (ARC) West Midlands. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Appendix A. ERC Special Circumstances

Writing Group Collaborators

Gamal Eldin Abbas Khalifa1, Efrén Álvarez4, Roberta Barelli2, Joost J. L.M. Bieren3, Bernd Boettiger1, Guttorn Brattebo1, Douglas Brown5, Hermann Brugger1,2, Tomasz Darocha2, Charles D. Deakin1, Joel Dunning1, Silvia Hunyadi-Anticevic1, Rudolph W. Koster1, David J. Lockey1, Mathieu Pasquier2, Jan Schmitz2.

1Substantial contribution to guidelines 2015
2Substantial contribution to Toxic agents section
3Substantial contribution to Hypothermia section
4Substantial contribution to Coronary thrombosis, catheterisation laboratory and cardiac surgery sections
5Substantial contribution to cardiac arrest in the operating room, Inflight cardiac arrest, Helicopter emergency medical services (HEMS) and air ambulances and Cruise ship sections

Appendix B. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.resuscitation.2021.02.011.

References

526. Wilson M.G.D., J.A.

